Consider the problem of determining whether an arbitrary sequence (x1, x2, . . . , xn) of n numbers contains repeated occurrences of some number. Show that this can be done in θ(n lg n) time, where lg n stands for log2 n.
Solution 1: Any sorting algorithms having log2 n complexity will be a capable to solve it in θ(n lg n) time.
Solution 2: If the domain of the sequence is not big, this problem can be solved in θ(n) time using the counting method, compute count[Xi] in the first loop, then find if there is any count[Xi] bigger than 1.
本文探讨了如何在一组数字中检测是否存在重复的数字,并提供了两种解决方案:一种是在θ(nlgn)时间内通过排序算法来实现,另一种是如果数字范围较小,则可以使用计数法在θ(n)时间内完成检测。
5671

被折叠的 条评论
为什么被折叠?



