#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
int main( )
{
// 图像读取及判断
cv::Mat srcImage = cv::imread("..\\images\\hand1.jpg");
if( !srcImage.data )
return 1;
// 灰度转换
cv::Mat srcGray;
cv::cvtColor(srcImage, srcGray, CV_RGB2GRAY);
cv::imshow("srcGray", srcGray);
cv::Mat dstImage;
// 初始化自适应阈值参数
int blockSize = 5;
int constValue = 10;
const int maxVal = 255;
/* 自适应阈值算法
0:ADAPTIVE_THRESH_MEAN_C
1: ADAPTIVE_THRESH_GAUSSIAN_C
阈值类型
0: THRESH_BINARY
1: THRESH_BINARY_INV */
int adaptiveMethod = 0;
int thresholdType = 1;
// 图像自适应阈值操作
cv::adaptiveThreshold(srcGray, dstImage,
maxVal, adaptiveMethod,
thresholdType, blockSize,
constValue);
cv::imshow("dstImage", dstImage);
cv::waitKey(0);
return 0;
}
转载:http://blog.youkuaiyun.com/zhuwei1988
adaptiveThreshold 阈值化的实现
最新推荐文章于 2021-10-22 21:37:29 发布