题意:给你一个递推式x[i] = (a * x[i - 1] + b) mod 10001,然后输入T,x[1], x[3], ….., x[2 * T - 1],求出剩下的序列。
思路:我们可以枚举a的值,然后用扩展欧几里得来求出来b然后进行验证当前的a,b是不是可以构成整个序列。
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>
#define MAXN 11000
#define MAXE 5
#define INF 100000000
#define MOD 10001
#define LL long long
#define pi 3.14159
using namespace std;
LL arr[MAXN];
void exgcd(LL a, LL b, LL &d, LL &x, LL &y) {
if (b == 0) {
d = a;
x = 1;
y = 0;
} else {
exgcd(b, a % b, d, y, x);
y -= x * (a / b);
}
}
int main() {
std::ios::sync_with_stdio(false);
int T;
while (cin >> T) {
for (int i = 1; i <= 2 * T; i += 2) {
cin >> arr[i];
}
LL a, b;
LL x = 0, y = 0, d = 0;
for (a = 1; a <= 10000; ++a) {
exgcd(MOD, a + 1, d, x, y);
if ((a * a * arr[1] - arr[3]) % d == 0) {
y = y * (a * a * arr[1] - arr[3]) / d;
if (y < 0) {
b = -y;
} else {
b = y;
}
b %= MOD;
bool flag = true;
for (int j = 2; j <= 2 * T; ++j) {
if (j % 2) {
if (arr[j] != (arr[j - 1] * a + b) % MOD) {
flag = false;
break;
}
} else {
arr[j] = (arr[j - 1] * a + b) % MOD;
}
}
if (flag) {
break;
}
}
}
for (int i = 2; i <= 2 * T; i += 2) {
cout << arr[i] << endl;
}
}
return 0;
}
/*
3
17
822
3014
*/