如何高效微调多模态Transformers模型:从入门到实践指南

多模态大模型(Multimodal Large Models)是能够处理多种类型数据(如文本、图像、音频等)的机器学习模型。transformers 是当前多模态大模型中的一种重要架构。

目录

Transformers简介

多模态Transformers

微调的必要性

高效微调方法

高效微调的工具和框架

结论



Transformers简介


Transformers 是一种基于注意力机制的深度学习模型,最初被用于自然语言处理任务。其主要特点是能够捕捉长距离依赖关系,同时支持并行计算,极大提高了训练速度和效果。近年来,transformers 也被扩展应用到其他模态,如图像和音频。


多模态Transformers


多模态Transformers 可以处理和融合来自不同模态的数据。例如,Vision Transformer (ViT) 可以处理图像数据,Multimodal Transformers 则可以同时处理图像和文本数据,将不同模态的信息进行融合和理解。


微调的必要性


大规模预训练的Transformers 模型通常需要微调(Fine-tuning)来适应特定的任务。微调可以让模型在特定数据集上进一步训练,从而提高其在该任务上的表现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值