题目大意
有n个模块 在双核cpu(A, B)上运行 模块i在a上运行成本为ai 在b上运行成本为bi 有m对模块之间要进行数据交换且有额外成本 但如果两个模块在相同内核上运行则不需要额外成本 问运行所有模块最小成本
题目思路
可以把A B看作源点和汇点 S向每个模块上连边, 模块向T连边 边权为模块在这个内核上运行的成本 然后再把数据交换的边连上(双向), 边权为额外成本 求最小割 割掉哪个边即为不在哪个内核上运行
代码
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 20010, M = 1000010, INF = 0x3f3f3f3f;
int n, m, S, T;
int h[N], e[M], ne[M], f[M], idx;
int cur[N], q[N], d[N];
void add(int a, int b, int c)
{
e[idx] = b, ne[idx] = h[a], f[idx] = c, h[a] = idx ++ ;
e[idx] = a, ne[idx] = h[b], f[idx] = 0, h[b] = idx ++ ;
}
bool bfs()
{
memset(d, -1, sizeof d);
int hh = 0, tt = 0;
q[0] = S, d[S] = 0, cur[S] = h[S];
while (hh <= tt)
{
int t = q[hh ++ ];
for (int i = h[t]; ~i; i = ne[i])
{
int ver = e[i];
if (d[ver] == -1 && f[i])
{
d[ver] = d[t] + 1;
cur[ver] = h[ver];
if (ver == T) return true;
q[ ++ tt] = ver;
}
}
}
return false;
}
int find(int u, int limit)
{
if (u == T) return limit;
int flow = 0;
for (int i = cur[u]; ~i && flow < limit; i = ne[i])
{
cur[u] = i;
int ver = e[i];
if (d[ver] == d[u] + 1 && f[i])
{
int t = find(ver, min(f[i], limit - flow));
if (!t) d[ver] = -1;
f[i] -= t, f[i ^ 1] += t, flow += t;
}
}
return flow;
}
int dinic()
{
int r = 0, flow;
while (bfs()) while (flow = find(S, INF)) r += flow;
return r;
}
int main()
{
scanf("%d%d", &n, &m);
S = 0, T = n + 1;
memset(h, -1, sizeof h);
for (int i = 1; i <= n; i ++ )
{
int a, b;
scanf("%d%d", &a, &b);
add(S, i, b), add(i, T, a);
}
while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c), add(b, a, c);
}
printf("%d\n", dinic());
return 0;
}