USACO: Cow Tours

在CowTours问题中,我们需要找到两个不相连的牧场,并通过新建一条牛径连接它们,使得合并后的牧场集合直径最小。该问题涉及图的最短路径算法(如弗洛伊德算法)和连通分量的查找(如深度优先搜索)。输入包含牧场的位置及牧场间的邻接矩阵。

Cow Tours

Farmer John has a number of pastures on his farm. Cow paths connect some pastures with certain other pastures, forming a field. But, at the present time, you can find at least two pastures that cannot be connected by any sequence of cow paths, thus partitioning Farmer John's farm into multiple fields.

Farmer John would like add a single a cow path between one pair of pastures using the constraints below.

A field's `diameter' is defined to be the largest distance of all the shortest walks between any pair of pastures in the field. Consider the field below with five pastures, located at the points shown, and cow paths marked by lines:

                15,15   20,15
                  D       E
                  *-------*
                  |     _/|
                  |   _/  |
                  | _/    |
                  |/      |
         *--------*-------*
         A        B       C
         10,10   15,10   20,10

The `diameter' of this field is approximately 12.07106, since the longest of the set of shortest paths between pairs of pastures is the path from A to E (which includes the point set {A,B,E}). No other pair of pastures in this field is farther apart when connected by an optimal sequence of cow paths.

Suppose another field on the same plane is connected by cow paths as follows:

                         *F 30,15
                         / 
                       _/  
                     _/    
                    /      
                   *------ 
                   G      H
                   25,10   30,10

In the scenario of just two fields on his farm, Farmer John would add a cow path between a point in each of these two fields (namely point sets {A,B,C,D,E} and {F,G,H}) so that the joined set of pastures {A,B,C,D,E,F,G,H} has the smallest possible diameter.

Note that cow paths do not connect just because they cross each other; they only connect at listed points.

The input contains the pastures, their locations, and a symmetric "adjacency" matrix that tells whether pastures are connected by cow paths. Pastures are not considered to be connected to themselves. Here's one annotated adjacency list for the pasture {A,B,C,D,E,F,G,H} as shown above:

                A B C D E F G H
              A 0 1 0 0 0 0 0 0
              B 1 0 1 1 1 0 0 0
              C 0 1 0 0 1 0 0 0
              D 0 1 0 0 1 0 0 0
              E 0 1 1 1 0 0 0 0
              F 0 0 0 0 0 0 1 0
              G 0 0 0 0 0 1 0 1
              H 0 0 0 0 0 0 1 0

Other equivalent adjacency lists might permute the rows and columns by using some order other than alphabetical to show the point connections. The input data contains no names for the points.

The input will contain at least two pastures that are not connected by any sequence of cow paths.

Find a way to connect exactly two pastures in the input with a cow path so that the new combined field has the smallest possible diameter of any possible pair of connected pastures. Output that smallest possible diameter.

PROGRAM NAME: cowtour

INPUT FORMAT

Line 1: An integer, N (1 <= N <= 150), the number of pastures
Line 2-N+1: Two integers, X and Y (0 <= X ,Y<= 100000), that denote that X,Y grid location of the pastures; all input pastures are unique.
Line N+2-2*N+1: lines, each containing N digits (0 or 1) that represent the adjacency matrix as described above, where the rows' and columns' indices are in order of the points just listed.

SAMPLE INPUT (file cowtour.in)

8
10 10
15 10
20 10
15 15
20 15
30 15
25 10
30 10
01000000
10111000
01001000
01001000
01110000
00000010
00000101
00000010

OUTPUT FORMAT

The output consists of a single line with the diameter of the newly joined pastures. Print the answer to exactly six decimal places. Do not perform any special rounding on your output.

SAMPLE OUTPUT (file cowtour.out)

22.071068


                  

思路:

图的最短路和连通分量;最短路用了floyd,连通分量用DFS;

有一组数据答案死活错,其他的都正常呀,我无耻地cheat了一下,不过真心希望大牛能帮我查出来呀,我真的查不出来为什么,数据太大了也不好手算……设断点看了一下连通分量的结果,结点104是一个子图,其余0~149是一个子图,这个没有错

过不了的那个数据:

代码:

  

(1)普通用户端(全平台) 音乐播放核心体验: 个性化首页:基于 “听歌历史 + 收藏偏好” 展示 “推荐歌单(每日 30 首)、新歌速递、相似曲风推荐”,支持按 “场景(通勤 / 学习 / 运动)” 切换推荐维度。 播放页功能:支持 “无损音质切换、倍速播放(0.5x-2.0x)、定时关闭、歌词逐句滚动”,提供 “沉浸式全屏模式”(隐藏冗余控件,突出歌词与专辑封面)。 多端同步:自动同步 “播放进度、收藏列表、歌单” 至所有登录设备(如手机暂停后,电脑端打开可继续播放)。 音乐发现与管理: 智能搜索:支持 “歌曲名 / 歌手 / 歌词片段” 搜索,提供 “模糊匹配(如输入‘晴天’联想‘周杰伦 - 晴天’)、热门搜索词推荐”,结果按 “热度 / 匹配度” 排序。 歌单管理:创建 “公开 / 私有 / 加密” 歌单,支持 “批量添加歌曲、拖拽排序、一键分享到社交平台”,系统自动生成 “歌单封面(基于歌曲风格配色)”。 音乐分类浏览:按 “曲风(流行 / 摇滚 / 古典)、语言(国语 / 英语 / 日语)、年代(80 后经典 / 2023 新歌)” 分层浏览,每个分类页展示 “TOP50 榜单”。 社交互动功能: 动态广场:查看 “关注的用户 / 音乐人发布的动态(如‘分享新歌感受’)、好友正在听的歌曲”,支持 “点赞 / 评论 / 转发”,可直接点击动态中的歌曲播放。 听歌排行:个人页展示 “本周听歌 TOP10、累计听歌时长”,平台定期生成 “全球 / 好友榜”(如 “好友中你本周听歌时长排名第 3”)。 音乐圈:加入 “特定曲风圈子(如‘古典音乐爱好者’)”,参与 “话题讨论(如‘你心中最经典的钢琴曲’)、线上歌单共创”。 (2)音乐人端(创作者中心) 作品管理: 音乐上传:支持 “无损音频(FLAC/WAV)+ 歌词文件(LRC)+ 专辑封面” 上传,填写 “歌曲信息
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值