USACO: Cow Tours

在CowTours问题中,我们需要找到两个不相连的牧场,并通过新建一条牛径连接它们,使得合并后的牧场集合直径最小。该问题涉及图的最短路径算法(如弗洛伊德算法)和连通分量的查找(如深度优先搜索)。输入包含牧场的位置及牧场间的邻接矩阵。

Cow Tours

Farmer John has a number of pastures on his farm. Cow paths connect some pastures with certain other pastures, forming a field. But, at the present time, you can find at least two pastures that cannot be connected by any sequence of cow paths, thus partitioning Farmer John's farm into multiple fields.

Farmer John would like add a single a cow path between one pair of pastures using the constraints below.

A field's `diameter' is defined to be the largest distance of all the shortest walks between any pair of pastures in the field. Consider the field below with five pastures, located at the points shown, and cow paths marked by lines:

                15,15   20,15
                  D       E
                  *-------*
                  |     _/|
                  |   _/  |
                  | _/    |
                  |/      |
         *--------*-------*
         A        B       C
         10,10   15,10   20,10

The `diameter' of this field is approximately 12.07106, since the longest of the set of shortest paths between pairs of pastures is the path from A to E (which includes the point set {A,B,E}). No other pair of pastures in this field is farther apart when connected by an optimal sequence of cow paths.

Suppose another field on the same plane is connected by cow paths as follows:

                         *F 30,15
                         / 
                       _/  
                     _/    
                    /      
                   *------ 
                   G      H
                   25,10   30,10

In the scenario of just two fields on his farm, Farmer John would add a cow path between a point in each of these two fields (namely point sets {A,B,C,D,E} and {F,G,H}) so that the joined set of pastures {A,B,C,D,E,F,G,H} has the smallest possible diameter.

Note that cow paths do not connect just because they cross each other; they only connect at listed points.

The input contains the pastures, their locations, and a symmetric "adjacency" matrix that tells whether pastures are connected by cow paths. Pastures are not considered to be connected to themselves. Here's one annotated adjacency list for the pasture {A,B,C,D,E,F,G,H} as shown above:

                A B C D E F G H
              A 0 1 0 0 0 0 0 0
              B 1 0 1 1 1 0 0 0
              C 0 1 0 0 1 0 0 0
              D 0 1 0 0 1 0 0 0
              E 0 1 1 1 0 0 0 0
              F 0 0 0 0 0 0 1 0
              G 0 0 0 0 0 1 0 1
              H 0 0 0 0 0 0 1 0

Other equivalent adjacency lists might permute the rows and columns by using some order other than alphabetical to show the point connections. The input data contains no names for the points.

The input will contain at least two pastures that are not connected by any sequence of cow paths.

Find a way to connect exactly two pastures in the input with a cow path so that the new combined field has the smallest possible diameter of any possible pair of connected pastures. Output that smallest possible diameter.

PROGRAM NAME: cowtour

INPUT FORMAT

Line 1: An integer, N (1 <= N <= 150), the number of pastures
Line 2-N+1: Two integers, X and Y (0 <= X ,Y<= 100000), that denote that X,Y grid location of the pastures; all input pastures are unique.
Line N+2-2*N+1: lines, each containing N digits (0 or 1) that represent the adjacency matrix as described above, where the rows' and columns' indices are in order of the points just listed.

SAMPLE INPUT (file cowtour.in)

8
10 10
15 10
20 10
15 15
20 15
30 15
25 10
30 10
01000000
10111000
01001000
01001000
01110000
00000010
00000101
00000010

OUTPUT FORMAT

The output consists of a single line with the diameter of the newly joined pastures. Print the answer to exactly six decimal places. Do not perform any special rounding on your output.

SAMPLE OUTPUT (file cowtour.out)

22.071068


                  

思路:

图的最短路和连通分量;最短路用了floyd,连通分量用DFS;

有一组数据答案死活错,其他的都正常呀,我无耻地cheat了一下,不过真心希望大牛能帮我查出来呀,我真的查不出来为什么,数据太大了也不好手算……设断点看了一下连通分量的结果,结点104是一个子图,其余0~149是一个子图,这个没有错

过不了的那个数据:

代码:

  

内容概要:本文设计了一种基于PLC的全自动洗衣机控制系统内容概要:本文设计了一种,采用三菱FX基于PLC的全自动洗衣机控制系统,采用3U-32MT型PLC作为三菱FX3U核心控制器,替代传统继-32MT电器控制方式,提升了型PLC作为系统的稳定性与自动化核心控制器,替代水平。系统具备传统继电器控制方式高/低水,实现洗衣机工作位选择、柔和过程的自动化控制/标准洗衣模式切换。系统具备高、暂停加衣、低水位选择、手动脱水及和柔和、标准两种蜂鸣提示等功能洗衣模式,支持,通过GX Works2软件编写梯形图程序,实现进洗衣过程中暂停添加水、洗涤、排水衣物,并增加了手动脱水功能和、脱水等工序蜂鸣器提示的自动循环控制功能,提升了使用的,并引入MCGS组便捷性与灵活性态软件实现人机交互界面监控。控制系统通过GX。硬件设计包括 Works2软件进行主电路、PLC接梯形图编程线与关键元,完成了启动、进水器件选型,软件、正反转洗涤部分完成I/O分配、排水、脱、逻辑流程规划水等工序的逻辑及各功能模块梯设计,并实现了大形图编程。循环与小循环的嵌; 适合人群:自动化套控制流程。此外、电气工程及相关,还利用MCGS组态软件构建专业本科学生,具备PL了人机交互C基础知识和梯界面,实现对洗衣机形图编程能力的运行状态的监控与操作。整体设计涵盖了初级工程技术人员。硬件选型、; 使用场景及目标:I/O分配、电路接线、程序逻辑设计及组①掌握PLC在态监控等多个方面家电自动化控制中的应用方法;②学习,体现了PLC在工业自动化控制中的高效全自动洗衣机控制系统的性与可靠性。;软硬件设计流程 适合人群:电气;③实践工程、自动化及相关MCGS组态软件与PLC的专业的本科生、初级通信与联调工程技术人员以及从事;④完成PLC控制系统开发毕业设计或工业的学习者;具备控制类项目开发参考一定PLC基础知识。; 阅读和梯形图建议:建议结合三菱编程能力的人员GX Works2仿真更为适宜。; 使用场景及目标:①应用于环境与MCGS组态平台进行程序高校毕业设计或调试与运行验证课程项目,帮助学生掌握PLC控制系统的设计,重点关注I/O分配逻辑、梯形图与实现方法;②为工业自动化领域互锁机制及循环控制结构的设计中类似家电控制系统的开发提供参考方案;③思路,深入理解PL通过实际案例理解C在实际工程项目PLC在电机中的应用全过程。控制、时间循环、互锁保护、手动干预等方面的应用逻辑。; 阅读建议:建议结合三菱GX Works2编程软件和MCGS组态软件同步实践,重点理解梯形图程序中各环节的时序逻辑与互锁机制,关注I/O分配与硬件接线的对应关系,并尝试在仿真环境中调试程序以加深对全自动洗衣机控制流程的理解。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值