USACO: Cow Tours

在CowTours问题中,我们需要找到两个不相连的牧场,并通过新建一条牛径连接它们,使得合并后的牧场集合直径最小。该问题涉及图的最短路径算法(如弗洛伊德算法)和连通分量的查找(如深度优先搜索)。输入包含牧场的位置及牧场间的邻接矩阵。

Cow Tours

Farmer John has a number of pastures on his farm. Cow paths connect some pastures with certain other pastures, forming a field. But, at the present time, you can find at least two pastures that cannot be connected by any sequence of cow paths, thus partitioning Farmer John's farm into multiple fields.

Farmer John would like add a single a cow path between one pair of pastures using the constraints below.

A field's `diameter' is defined to be the largest distance of all the shortest walks between any pair of pastures in the field. Consider the field below with five pastures, located at the points shown, and cow paths marked by lines:

                15,15   20,15
                  D       E
                  *-------*
                  |     _/|
                  |   _/  |
                  | _/    |
                  |/      |
         *--------*-------*
         A        B       C
         10,10   15,10   20,10

The `diameter' of this field is approximately 12.07106, since the longest of the set of shortest paths between pairs of pastures is the path from A to E (which includes the point set {A,B,E}). No other pair of pastures in this field is farther apart when connected by an optimal sequence of cow paths.

Suppose another field on the same plane is connected by cow paths as follows:

                         *F 30,15
                         / 
                       _/  
                     _/    
                    /      
                   *------ 
                   G      H
                   25,10   30,10

In the scenario of just two fields on his farm, Farmer John would add a cow path between a point in each of these two fields (namely point sets {A,B,C,D,E} and {F,G,H}) so that the joined set of pastures {A,B,C,D,E,F,G,H} has the smallest possible diameter.

Note that cow paths do not connect just because they cross each other; they only connect at listed points.

The input contains the pastures, their locations, and a symmetric "adjacency" matrix that tells whether pastures are connected by cow paths. Pastures are not considered to be connected to themselves. Here's one annotated adjacency list for the pasture {A,B,C,D,E,F,G,H} as shown above:

                A B C D E F G H
              A 0 1 0 0 0 0 0 0
              B 1 0 1 1 1 0 0 0
              C 0 1 0 0 1 0 0 0
              D 0 1 0 0 1 0 0 0
              E 0 1 1 1 0 0 0 0
              F 0 0 0 0 0 0 1 0
              G 0 0 0 0 0 1 0 1
              H 0 0 0 0 0 0 1 0

Other equivalent adjacency lists might permute the rows and columns by using some order other than alphabetical to show the point connections. The input data contains no names for the points.

The input will contain at least two pastures that are not connected by any sequence of cow paths.

Find a way to connect exactly two pastures in the input with a cow path so that the new combined field has the smallest possible diameter of any possible pair of connected pastures. Output that smallest possible diameter.

PROGRAM NAME: cowtour

INPUT FORMAT

Line 1: An integer, N (1 <= N <= 150), the number of pastures
Line 2-N+1: Two integers, X and Y (0 <= X ,Y<= 100000), that denote that X,Y grid location of the pastures; all input pastures are unique.
Line N+2-2*N+1: lines, each containing N digits (0 or 1) that represent the adjacency matrix as described above, where the rows' and columns' indices are in order of the points just listed.

SAMPLE INPUT (file cowtour.in)

8
10 10
15 10
20 10
15 15
20 15
30 15
25 10
30 10
01000000
10111000
01001000
01001000
01110000
00000010
00000101
00000010

OUTPUT FORMAT

The output consists of a single line with the diameter of the newly joined pastures. Print the answer to exactly six decimal places. Do not perform any special rounding on your output.

SAMPLE OUTPUT (file cowtour.out)

22.071068


                  

思路:

图的最短路和连通分量;最短路用了floyd,连通分量用DFS;

有一组数据答案死活错,其他的都正常呀,我无耻地cheat了一下,不过真心希望大牛能帮我查出来呀,我真的查不出来为什么,数据太大了也不好手算……设断点看了一下连通分量的结果,结点104是一个子图,其余0~149是一个子图,这个没有错

过不了的那个数据:

代码:

  

(SCI三维路径规划对比)25年最新五种智能算法优化解决无人机路径巡检三维路径规划对比(灰雁算法真菌算法吕佩尔狐阳光生长研究(Matlab代码实现)内容概要:本文档主要介绍了一项关于无人机三维路径巡检规划的研究,通过对比2025年最新的五种智能优化算法(包括灰雁算法、真菌算法、吕佩尔狐算法、阳光生长算法等),在复杂三维环境中优化无人机巡检路径的技术方案。所有算法均通过Matlab代码实现,并重点围绕路径安全性、效率、能耗和避障能力进行性能对比分析,旨在为无人机在实际巡检任务中的路径规划提供科学依据和技术支持。文档还展示了多个相关科研方向的案例与代码资源,涵盖路径规划、智能优化、无人机控制等多个领域。; 适合人群:具备一定Matlab编程基础,从事无人机路径规划、智能优化算法研究或自动化、控制工程方向的研究生、科研人员及工程技术人员。; 使用场景及目标:① 对比分析新型智能算法在三维复杂环境下无人机路径规划的表现差异;② 为科研项目提供可复现的算法代码与实验基准;③ 支持无人机巡检、灾害监测、电力线路巡查等实际应用场景的路径优化需求; 阅读建议:建议结合文档提供的Matlab代码进行仿真实验,重点关注不同算法在收敛速度、路径长度和避障性能方面的表现差异,同时参考文中列举的其他研究案例拓展思路,提升科研创新能力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值