USACO: Overfencing

本文介绍了一种求解迷宫最短路径的算法,利用类似填数游戏的方法,从出口开始逐步填充步数,直至覆盖整个迷宫,确保找到任意点到最近出口的最短距离。

Overfencing
Kolstad and Schrijvers

Farmer John went crazy and created a huge maze of fences out in a field. Happily, he left out two fence segments on the edges, and thus created two "exits" for the maze. Even more happily, the maze he created by this overfencing experience is a `perfect' maze: you can find a way out of the maze from any point inside it.

Given W (1 <= W <= 38), the width of the maze; H (1 <= H <= 100), the height of the maze; 2*H+1 lines with width 2*W+1 characters that represent the maze in a format like that shown later - then calculate the number of steps required to exit the maze from the `worst' point in the maze (the point that is `farther' from either exit even when walking optimally to the closest exit). Of course, cows walk only parallel or perpendicular to the x-y axes; they do not walk on a diagonal. Each move to a new square counts as a single unit of distance (including the move "out" of the maze.

Here's what one particular W=5, H=3 maze looks like:

+-+-+-+-+-+
|         |
+-+ +-+ + +
|     | | |
+ +-+-+ + +
| |     |  
+-+ +-+-+-+

Fenceposts appear only in odd numbered rows and and odd numbered columns (as in the example). The format should be obvious and self explanatory. Each maze has exactly two blank walls on the outside for exiting.

PROGRAM NAME: maze1

INPUT FORMAT

Line 1: W and H, space separated
Lines 2 through 2*H+2: 2*W+1 characters that represent the maze

SAMPLE INPUT (file maze1.in)

5 3
+-+-+-+-+-+
|         |
+-+ +-+ + +
|     | | |
+ +-+-+ + +
| |     |  
+-+ +-+-+-+

OUTPUT FORMAT

A single integer on a single output line. The integer specifies the minimal number of steps that guarantee a cow can exit the maze from any possible point inside the maze.

SAMPLE OUTPUT (file maze1.out)

9

The lower left-hand corner is *nine* steps from the closest exit.

 

做这道题和做上一道(脱离地牢)的时候学会了这种迷宫寻最短路的思路,类似填数游戏:起点填1,1的相邻的四格符合条件的填2,每个填2的相邻四格符合条件的填3……直到获得所需答案

其实就是传说中的BFS

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值