USACO: Packing Rectangles

本文解析了一道经典的矩形排列模拟题,旨在寻找四个矩形以最小面积组合的方式。通过对不同排列组合的分析,提供了完整的C++实现代码,并通过实际测试案例验证了程序的有效性和正确性。
Packing Rectangles
IOI 95  
The six basic layouts of four rectangles

Four rectangles are given. Find the smallest enclosing (new) rectangle into which these four may be fitted without overlapping. By smallest rectangle, we mean the one with the smallest area.

All four rectangles should have their sides parallel to the corresponding sides of the enclosing rectangle. Figure 1 shows six ways to fit four rectangles together. These six are the only possible basic layouts, since any other layout can be obtained from a basic layout by rotation or reflection. Rectangles may be rotated 90 degrees during packing.

There may exist several different enclosing rectangles fulfilling the requirements, all with the same area. You must produce all such enclosing rectangles.

PROGRAM NAME: packrec

INPUT FORMAT

Four lines, each containing two positive space-separated integers that represent the lengths of a rectangle's two sides. Each side of a rectangle is at least 1 and at most 50.

SAMPLE INPUT (file packrec.in)

1 2
2 3
3 4
4 5

OUTPUT FORMAT

The output file contains one line more than the number of solutions. The first line contains a single integer: the minimum area of the enclosing rectangles. Each of the following lines contains one solution described by two numbers p and q with p<=q. These lines must be sorted in ascending order of p, and must all be different.

SAMPLE OUTPUT (file packrec.out)

40
4 10
5 8


完完全全的模拟题,属于那种做了就不想再做一次的题目……

 

 

 

USER: Geterns Liu [geterns1]
TASK: packrec
LANG: C++

Compiling...
Compile: OK

Executing...
   Test 1: TEST OK [0.022 secs, 3016 KB]
   Test 2: TEST OK [0.000 secs, 3016 KB]
   Test 3: TEST OK [0.000 secs, 3016 KB]
   Test 4: TEST OK [0.011 secs, 3016 KB]
   Test 5: TEST OK [0.011 secs, 3016 KB]
   Test 6: TEST OK [0.000 secs, 3016 KB]
   Test 7: TEST OK [0.000 secs, 3016 KB]
   Test 8: TEST OK [0.000 secs, 3016 KB]
   Test 9: TEST OK [0.000 secs, 3016 KB]
   Test 10: TEST OK [0.011 secs, 3016 KB]
   Test 11: TEST OK [0.011 secs, 3016 KB]
   Test 12: TEST OK [0.011 secs, 3016 KB]
   Test 13: TEST OK [0.000 secs, 3016 KB]
   Test 14: TEST OK [0.000 secs, 3016 KB]
   Test 15: TEST OK [0.000 secs, 3016 KB]
   Test 16: TEST OK [0.011 secs, 3016 KB]
   Test 17: TEST OK [0.000 secs, 3016 KB]
   Test 18: TEST OK [0.000 secs, 3016 KB]
   Test 19: TEST OK [0.022 secs, 3016 KB]
   Test 20: TEST OK [0.000 secs, 3016 KB]
   Test 21: TEST OK [0.000 secs, 3016 KB]

All tests OK.

Your program ('packrec') produced all correct answers! This is your submission #8 for this problem. Congratulations!

Here are the test data inputs:

------- test 1 -------
1 2
2 3
3 4
4 5
------- test 2 -------
20 20
20 20
20 20
20 20
------- test 3 -------
4 5
5 4
4 5
16 1
------- test 4 -------
4 5
2 5
5 2
2 10
------- test 5 -------
12 18
4 6
2 17
19 3
------- test 6 -------
10 10
5 5
15 15
20 20
------- test 7 -------
1 1
1 20
1 20
20 20
------- test 8 -------
5 8
3 12
15 4
14 10
------- test 9 -------
4 5
5 6
6 4
4 5
------- test 10 -------
1 5
5 10
10 15
15 20
------- test 11 -------
3 4
8 5
7 1
4 5
------- test 12 -------
17 11
16 20
4 6
13 19
------- test 13 -------
4 2
2 6
2 3
5 8
------- test 14 -------
1 2
2 3
3 4
4 5
------- test 15 -------
4 8
8 12
12 16
16 20
------- test 16 -------
3 5
1 3
2 4
2 5
------- test 17 -------
4 3
4 4
6 3
5 5
------- test 18 -------
49 50
49 50
49 50
49 50
------- test 19 -------
10 50
45 30
28 38
36 20
------- test 20 -------
50 49
49 48
48 47
47 46
------- test 21 -------
50 49
48 47
46 45
45 44
Keep up the good work!

Thanks for your submission!
 

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值