Go goroutine——GMP理论

Go语言的并发机制基于goroutine,它们轻量级且栈大小可动态调整。goroutine调度由Go运行时的GPM模型管理,其中G是goroutine,P是处理器,M是机器线程。GOMAXPROCS决定了并发时使用的CPU核心数。P的本地队列设计在M上,允许在M阻塞时将G转移到其他线程,提高效率。

Go语言最大的特色就是从语言层面支持并发(Goroutine),Goroutine是Go中最基本的并发执行单元。事实上每一个Go程序至少有一个Goroutine:主Goroutine(十分注意main也是协程)。当程序启动时,它会自动创建。

线程(Thread)和协程(coroutine)

线程(Thread):有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元。一个标准的线程由线程ID,当前指令指针(PC),寄存器集合和堆栈组成。另外,线程是进程中的一个实体,是被系统独立调度和分派的基本单位,线程自己不拥有系统资源,只拥有一点儿在运行中必不可少的资源,但它可与同属一个进程的其它线程共享进程所拥有的全部资源。

线程拥有自己独立的栈和共享的堆,共享堆,不共享栈,线程的切换一般也由操作系统调度。

协程(coroutine):又称微线程与子例程(或者称为函数)一样,协程(coroutine)也是一种程序组件。相对子例程而言,协程更为一般和灵活,但在实践中使用没有子例程那样广泛。

和线程类似,共享堆,不共享栈,协程的切换一般由程序员在代码中显式控制。它避免了上下文切换的额外耗费,兼顾了多线程的优点,简化了高并发程序的复杂。

Goroutine和其他语言的协程(coroutine)在使用方式上类似,但从字面意义上来看不同(一个是Goroutine,一个是coroutine),再就是协程是一种协作任务控制机制,在最简单的意义上,协程不是并发的,而Goroutine支持并发的。因此Goroutine可以理解为一种Go语言的协程。同时它可以运行在一个或多个线程上。

func loop() {
    for i := 0; i < 10; i++ {
        fmt.Printf("%d ", i)
    }
}
func main() {
   go loop() // 启动一个goroutine
    loop()
}

goroutine 和线程的区别

How Goroutines Work:https://nindalf.com/posts/how-goroutines-work/ 告诉我们可以从三个角度区别:内存消耗、创建与销毀、切换。

内存占用

创建一个 goroutine 的栈内存消耗为 2 KB,实际运行过程中,如果栈空间不够用,会自动进行扩容。创建一个 thread 则需要消耗 1 MB 栈内存,而且还需要一个被称为 “a guard page” 的区域用于和其他 thread 的栈空间进行隔离。

对于一个用 Go 构建的 HTTP Server 而言,对到来的每个请求,创建一个 goroutine 用来处理是非常轻松的一件事。而如果用一个使用线程作为并发原语的语言构建的服务,例如 Java 来说,每个请求对应一个线程则太浪费资源了,很快就会出 OOM 错误(OutOfMemoryError)。

Goroutine 是 Go 语言支持并发的核心,在一个Go程序中同时创建成百上千个goroutine是非常普遍的,一个goroutine会以一个很小的栈开始其生命周期,一般只需要2KB。区别于操作系统线程由系统内核进行调度, goroutine 是由Go运行时(runtime)负责调度。例如Go运行时会智能地将 m个goroutine 合理地分配给n个操作系统线程,实现类似m:n的调度机制,不再需要Go开发者自行在代码层面维护一个线程池。

创建和销毀

Thread 创建和销毀都会有巨大的消耗,因为要和操作系统打交道,是内核级的,通常解决的办法就是线程池。而 goroutine 因为是由 Go runtime 负责管理的,创建和销毁的消耗非常小,是用户级。

切换

当 threads 切换时,需要保存各种寄存器,以便将来恢复:

16 general purpose registers, PC (Program Counter), SP (Stack Pointer), segment registers, 16 XMM registers, FP coprocessor state, 16 AVX registers, all MSRs etc. (16 个通用寄存器、程序计数器(PC)、栈指针(SP)、段寄存器、16 个 XMM 寄存器、浮点协处理器状态、16 个 AVX 寄存器、所有的 MSR(模型特定寄存器)等。)

而 goroutines 切换只需保存三个寄存器:Program Counter, Stack Pointer and BP。

一般而言,线程切换会消耗 1000-1500 纳秒,一个纳秒平均可以执行 12-18 条指令。所以由于线程切换,执行指令的条数会减少 12000-18000。

Goroutine 的切换约为 200 ns,相当于 2400-3600 条指令。

因此,goroutines 切换成本比 threads 要小得多。

Go并发模型

Go实现了两种并发形式。第一种是大家普遍认知的:多线程共享内存。其实就是Java或者C++等语言中的多线程开发。另外一种是Go语言特有的,也是Go语言推荐的:CSP(communicating sequential processes)并发模型。

CSP并发模型是在1970年左右提出的概念,属于比较新的概念,不同于传统的多线程通过共享内存来通信,CSP讲究的是“以通信的方式来共享内存”。

请记住下面这句话: DO NOT COMMUNICATE BY SHARING MEMORY; INSTEAD, SHARE MEMORY BY COMMUNICATING. “不要以共享内存的方式来通信,相反,要通过通信来共享内存。”

普通的线程并发模型,就是像Java、C++、或者Python,他们线程间通信都是通过共享内存的方式来进行的。非常典型的方式就是,在访问共享数据(例如数组、Map、或者某个结构体或对象)的时候,通过锁来访问,因此,在很多时候,衍生出一种方便操作的数据结构,叫做“线程安全的数据结构”。例如Java提供的包”java.util.concurrent”中的数据结构。Go中也实现了传统的线程并发模型。

Go的CSP并发模型,是通过goroutine和channel来实现的。

  • goroutine 是Go语言中并发的执行单位。有点抽象,其实就是和传统概念上的”线程“类似,可以理解为”线程“。
  • channel是Go语言中各个并发结构体(goroutine)之前的通信机制。 通俗的讲,就是各个goroutine之间通信的”管道“,有点类似于Linux中的管道。

生成一个goroutine的方式非常的简单:Go一下,就生成了。

go f();

通信机制channel也很方便,传数据用channel <- data,取数据用<-channel

在通信过程中,传数据channel <- data和取数据<-channel必然会成对出现,因为这边传,那边取,两个goroutine之间才会实现通信。

而且不管传还是取,必阻塞,直到另外的goroutine传或者取为止。

package main

import "fmt"

func main() {

   messages := make(chan string)
   
   go func() { messages <- "ping" }()
   
   msg := <-messages
   
   fmt.Println(msg)
}

注意 main()本身也是运行了一个goroutine。

messages:= make(chan int) 这样就声明了一个阻塞式的无缓冲的通道

chan 是关键字 代表我要创建一个通道。

如何理解“不要以共享内存的方式来通信,相反,要通过通信来共享内存。”

这句话的出处是 Go 语言的设计哲学之一,通常用于说明 Go 语言在并发编程中的核心理念。

  1. “以共享内存的方式来通信”

    • 传统的并发编程方式:在很多编程语言中,并发程序通常通过多个线程或进程访问和修改同一块内存区域(即共享内存)来进行通信。这种方式要求使用锁(如互斥锁、读写锁)来保证多个线程或进程同时访问时的数据一致性。
    • 挑战:这种方式虽然有效,但容易引发竞争条件(Race Condition)、死锁(Deadlock)等问题,导致程序难以调试和维护。开发者需要非常小心地管理这些锁的使用,以确保程序的正确性。
  2. “通过通信来共享内存”

    • Go 语言的并发模型:Go 语言提倡通过通信通道(即 channel)来进行并发程序中的信息共享。与其让多个 goroutine 直接访问同一块内存,不如通过 channel 传递数据,从而实现数据在不同 goroutine 之间的共享。
    • 优势:这种方式避免了显式使用锁来管理共享状态,从而减少了并发编程中的复杂性。channel 保证了只有一个 goroutine 可以访问数据,因此不需要担心竞争条件和数据竞争问题。

理解这句话:

  • 以共享内存的方式来通信:意味着多个并发实体(如线程、进程)通过直接访问同一块内存区域来交换信息。
  • 通过通信来共享内存:意味着通过通信机制(如 Go 的 channel)来传递和共享数据,而不是直接操作同一块内存。

Go 语言的设计者认为,通过通信机制来共享内存,可以避免很多并发编程中的常见问题,让程序更加简洁和安全。因此,这句话强调了 Go 语言在并发编程中的推荐实践,即尽量避免直接使用共享内存,而是通过通信来共享数据。

GO并发模型的实现原理

无论语言层面何种并发模型,到了操作系统层面,一定是以线程的形态存在的。而操作系统根据资源访问权限的不同,体系架构可分为用户空间和内核空间;内核空间主要操作访问CPU资源、I/O资源、内存资源等硬件资源,为上层应用程序提供最基本的基础资源,用户空间呢就是上层应用程序的固定活动空间,用户空间不可以直接访问资源,必须通过“系统调用”、“库函数”或“Shell脚本”来调用内核空间提供的资源。

我们现在的计算机语言,可以狭义的认为是一种“软件”,它们中所谓的“线程”,往往是用户态的线程,和操作系统本身内核态的线程(简称KSE),还是有区别的。

线程模型的实现,可以分为以下几种方式:

用户级线程模型

在这里插入图片描述
多个用户态的线程对应着一个内核线程,程序线程的创建、终止、切换或者同步等线程工作必须自身来完成。它可以做快速的上下文切换。缺点是不能有效利用多核CPU。

内核级线程模型

在这里插入图片描述
这种模型直接调用操作系统的内核线程,所有线程的创建、终止、切换、同步等操作,都由内核来完成。一个用户态的线程对应一个系统线程,它可以利用多核机制,但上下文切换需要消耗额外的资源。C++就是这种。

两级线程模型

在这里插入图片描述
这种模型是介于用户级线程模型和内核级线程模型之间的一种线程模型。这种模型的实现非常复杂,和内核级线程模型类似,一个进程中可以对应多个内核级线程,但是进程中的线程不和内核线程一一对应;这种线程模型会先创建多个内核级线程,然后用自身的用户级线程去对应创建的多个内核级线程,自身的用户级线程需要本身程序去调度,内核级的线程交给操作系统内核去调度。

M个用户线程对应N个系统线程,缺点增加了调度器的实现难度。

Go语言的线程模型就是一种特殊的两级线程模型(GPM调度模型)。

scheduler

Go 程序的执行由两层组成:Go Program,Runtime,即用户程序和运行时。它们之间通过函数调用来实现内存管理、channel 通信、goroutines 创建等功能。用户程序进行的系统调用都会被 Runtime 拦截,以此来帮助它进行调度以及垃圾回收相关的工作。

一个展现了全景式的关系如下图:

在这里插入图片描述
Go scheduler 可以说是 Go 运行时的一个最重要的部分了。Runtime 维护所有的 goroutines,并通过 scheduler 来进行调度。Goroutines 和 threads 是独立的,但是 goroutines 要依赖 threads 才能执行。

Go 程序执行的高效和 scheduler 的调度是分不开的。

scheduler 底层原理

在操作系统看来,所有的程序都是在执行多线程。将 goroutines 调度到线程上执行,仅仅是 runtime 层面的一个概念,在操作系统之上的层面。

有三个基础的结构体来实现 goroutines 的调度。g,m,p。

g:代表一个 goroutine,它包含:表示 goroutine 栈的一些字段,指示当前 goroutine 的状态,指示当前运行到的指令地址,也就是 PC 值。

m:表示内核线程,包含正在运行的 goroutine 等字段。

p:代表一个虚拟的 Processor,它维护一个处于 Runnable 状态的 g 队列,m 需要获得 p 才能运行 g。

当然还有一个核心的结构体:sched,它总览全局。

Runtime 起始时会启动一些 G:垃圾回收的 G,执行调度的 G,运行用户代码的 G;并且会创建一个 M 用来开始 G 的运行。随着时间的推移,更多的 G 会被创建出来,更多的 M 也会被创建出来。

当然,在 Go 的早期版本,并没有 p 这个结构体,m 必须从一个全局的队列里获取要运行的 g,因此需要获取一个全局的锁,当并发量大的时候,锁就成了瓶颈。后来在大神 Dmitry Vyokov 的实现里,加上了 p 结构体。每个 p 自己维护一个处于 Runnable 状态的 g 的队列,解决了原来的全局锁问题。

Go scheduler 的目标:用于将 goroutine 调度到内核线程上。

在这里插入图片描述
Go scheduler 的核心思想是:

  1. reuse threads;
  2. 限制同时运行(不包含阻塞)的线程数为 N,N 等于 CPU 的核心数目;
  3. 线程私有的 runqueues,并且可以从其他线程 stealing goroutine 来运行,线程阻塞后,可以将 runqueues 传递给其他线程。

为什么需要 P 这个组件,直接把 runqueues 放到 M 不行吗?

  1. 当一个线程阻塞的时候,将和它绑定的 P 上的 goroutines 转移到其他线程。(当运行的线程由于某种原因需要阻塞时,我们可以将上下文交给其他线程。一个需要阻塞的例子是调用系统调用(syscall)时。由于线程无法同时执行代码和阻塞在系统调用上,我们需要交出上下文,以便它可以继续进行调度。)

  2. Go scheduler 会启动一个后台线程 sysmon,用来检测长时间(超过 10 ms)运行的 goroutine,将其调度到 global runqueues。这是一个全局的 runqueue,优先级比较低,以示“惩罚”。

在这里插入图片描述

数据结构

在这里插入图片描述

G

Goroutine 是 Go 语言调度器中待执行的任务,它在运行时调度器中的地位与线程在操作系统中差不多,但是它占用了更小的内存空间,也降低了上下文切换的开销。

Goroutine 只存在于 Go 语言的运行时,它是 Go 语言在用户态提供的线程,作为一种粒度更细的资源调度单元,如果使用得当能够在高并发的场景下更高效地利用机器的 CPU。

Goroutine 在 Go 语言运行时使用私有结构体 runtime.g 表示。这个私有结构体非常复杂,总共包含 40 多个用于表示各种状态的成员变量:

type g struct {
	stack       stack
	stackguard0 uintptr
	...
}

其中 stack 字段描述了当前 Goroutine 的栈内存范围 [stack.lo, stack.hi),另一个字段 stackguard0 可以用于调度器抢占式调度。除了 stackguard0 之外,Goroutine 中还包含另外三个与抢占密切相关的字段:

type g struct {
	stack         stack
	stackguard0   uintptr
	preempt       bool // 抢占信号
	preemptStop   bool // 抢占时将状态修改成 `_Gpreempted`
	preemptShrink bool // 在同步安全点收缩栈
}

Goroutine 与 defer 和 panic 也有千丝万缕的联系,每一个 Goroutine 上都持有两个分别存储 defer 和 panic 对应结构体的链表:

type g struct {
	stack         stack
	stackguard0   uintptr
	preempt       bool // 抢占信号
	preemptStop   bool // 抢占时将状态修改成 `_Gpreempted`
	preemptShrink bool // 在同步安全点收缩栈
	_panic       *_panic // 最内侧的 panic 结构体
	_defer       *_defer // 最内侧的延迟函数结构体

	m              *m
	sched          gobuf
	atomicstatus   uint32
	goid           int64
}
  • m — 当前 Goroutine 占用的线程,可能为空;
  • atomicstatus — Goroutine 的状态;
  • sched — 存储 Goroutine 的调度相关的数据;
  • goid — Goroutine 的 ID,该字段对开发者不可见,Go 团队认为引入 ID 会让部分 Goroutine 变得更特殊,从而限制语言的并发能力;

上述四个字段中,我们需要展开介绍 sched 字段的 runtime.gobuf 结构体中包含哪些内容:

type gobuf struct {
	sp   uintptr
	pc   uintptr
	g    guintptr
	ret  sys.Uintreg
	...
}
  • sp — 栈指针;
  • pc — 程序计数器;
  • g — 持有 runtime.gobuf 的 Goroutine;
  • ret — 系统调用的返回值;

这些内容会在调度器保存或者恢复上下文的时候用到,其中的栈指针和程序计数器会用来存储或者恢复寄存器中的值,改变程序即将执行的代码。

结构体 runtime.g 的 atomicstatus 字段存储了当前 Goroutine 的状态。除了几个已经不被使用的以及与 GC 相关的状态之外,Goroutine 可能处于以下 9 种状态:

状态描述
_Gidle刚刚被分配并且还没有被初始化
_Grunnable没有执行代码,没有栈的所有权,存储在运行队列中
_Grunning可以执行代码,拥有栈的所有权,被赋予了内核线程 M 和处理器 P
_Gsyscall正在执行系统调用,拥有栈的所有权,没有执行用户代码,被赋予了内核线程 M 但是不在运行队列上
_Gwaiting由于运行时而被阻塞,没有执行用户代码并且不在运行队列上,但是可能存在于 Channel 的等待队列上
_Gdead没有被使用,没有执行代码,可能有分配的栈
_Gcopystack栈正在被拷贝,没有执行代码,不在运行队列上
_Gpreempted由于抢占而被阻塞,没有执行用户代码并且不在运行队列上,等待唤醒
_GscanGC 正在扫描栈空间,没有执行代码,可以与其他状态同时存在

上述状态中比较常见是 _Grunnable、_Grunning、_Gsyscall、_Gwaiting 和 _Gpreempted 五个状态。

虽然 Goroutine 在运行时中定义的状态非常多而且复杂,但是我们可以将这些不同的状态聚合成三种:等待中、可运行、运行中,运行期间会在这三种状态来回切换:

  1. 等待中:Goroutine 正在等待某些条件满足,例如:系统调用结束等,包括 _Gwaiting、_Gsyscall 和 _Gpreempted 几个状态;
  2. 可运行:Goroutine 已经准备就绪,可以在线程运行,如果当前程序中有非常多的 Goroutine,每个 Goroutine 就可能会等待更多的时间,即 _Grunnable;
  3. 运行中:Goroutine 正在某个线程上运行,即 _Grunning;

在这里插入图片描述

M

Go 语言并发模型中的 M 是操作系统线程。调度器最多可以创建 10000 个线程,但是其中大多数的线程都不会执行用户代码(可能陷入系统调用),最多只会有 GOMAXPROCS 个活跃线程能够正常运行。

在默认情况下,运行时会将 GOMAXPROCS 设置成当前机器的核数,也可以在程序中使用 runtime.GOMAXPROCS 来改变最大的活跃线程数。

在这里插入图片描述
在默认情况下,一个四核机器会创建四个活跃的操作系统线程,每一个线程都对应一个运行时中的 runtime.m 结构体。

Go 语言会使用私有结构体 runtime.m 表示操作系统线程,这个结构体也包含了几十个字段:

type m struct {
	g0   *g
	curg *g
	...
}

其中 g0 是持有调度栈的 Goroutine,curg 是在当前线程上运行的用户 Goroutine,这也是操作系统线程唯一关心的两个 Goroutine。

在这里插入图片描述
g0 是一个运行时中比较特殊的 Goroutine,它会深度参与运行时的调度过程,包括 Goroutine 的创建、大内存分配和 CGO 函数的执行。

runtime.m 结构体中还存在三个与处理器相关的字段,它们分别表示正在运行代码的处理器 p、暂存的处理器 nextp 和执行系统调用之前使用线程的处理器 oldp:

type m struct {
	p             puintptr
	nextp         puintptr
	oldp          puintptr
}

P

调度器中的处理器 P 是线程和 Goroutine 的中间层,它能提供线程需要的上下文环境,也会负责调度线程上的等待队列,通过处理器 P 的调度,每一个内核线程都能够执行多个 Goroutine,它能在 Goroutine 进行一些 I/O 操作时及时让出计算资源,提高线程的利用率。

因为调度器在启动时就会创建 GOMAXPROCS 个处理器,所以 Go 语言程序的处理器数量一定会等于 GOMAXPROCS,这些处理器会绑定到不同的内核线程上。

runtime.p 是处理器的运行时表示,作为调度器的内部实现,它包含的字段也非常多,其中包括与性能追踪、垃圾回收和计时器相关的字段,这些字段也非常重要,但是在这里就不展示了,我们主要关注处理器中的线程和运行队列:

type p struct {
	m           muintptr

	runqhead uint32
	runqtail uint32
	runq     [256]guintptr
	runnext guintptr
	...
}

反向存储的线程维护着线程与处理器之间的关系,而 runqhead、runqtail 和 runq 三个字段表示处理器持有的运行队列,其中存储着待执行的 Goroutine 列表,runnext 中是线程下一个需要执行的 Goroutine。

runtime.p 结构体中的状态 status 字段会是以下五种中的一种:

状态描述
_Pidle处理器没有运行用户代码或者调度器,被空闲队列或者改变其状态的结构持有,运行队列为空
_Prunning被线程 M 持有,并且正在执行用户代码或者调度器
_Psyscall没有执行用户代码,当前线程陷入系统调用
_Pgcstop被线程 M 持有,当前处理器由于垃圾回收被停止
_Pdead当前处理器已经不被使用

通过分析处理器 P 的状态,我们能够对处理器的工作过程有一些简单理解,例如处理器在执行用户代码时会处于 _Prunning 状态,在当前线程执行 I/O 操作时会陷入 _Psyscall 状态。

调度器启动

调度器的启动过程是我们平时比较难以接触的过程,不过作为程序启动前的准备工作,理解调度器的启动过程对我们理解调度器的实现原理很有帮助,运行时通过 runtime.schedinit 初始化调度器:

func schedinit() {
	_g_ := getg()
	...

	sched.maxmcount = 10000

	...
	sched.lastpoll = uint64(nanotime())
	procs := ncpu
	if n, ok := atoi32(gogetenv("GOMAXPROCS")); ok && n > 0 {
		procs = n
	}
	if procresize(procs) != nil {
		throw("unknown runnable goroutine during bootstrap")
	}
}

在调度器初始函数执行的过程中会将 maxmcount 设置成 10000,这也就是一个 Go 语言程序能够创建的最大线程数,虽然最多可以创建 10000 个线程,但是可以同时运行的线程还是由 GOMAXPROCS 变量控制。

在这里插入图片描述
从环境变量 GOMAXPROCS 获取了程序能够同时运行的最大处理器数之后就会调用 runtime.procresize 更新程序中处理器的数量,在这时整个程序不会执行任何用户 Goroutine,调度器也会进入锁定状态,runtime.procresize 的执行过程如下:

  1. 如果全局变量 allp 切片中的处理器数量少于期望数量,会对切片进行扩容;
  2. 使用 new 创建新的处理器结构体并调用 runtime.p.init 初始化刚刚扩容的处理器;
  3. 通过指针将线程 m0 和处理器 allp[0] 绑定到一起;
  4. 调用 runtime.p.destroy 释放不再使用的处理器结构;
  5. 通过截断改变全局变量 allp 的长度保证与期望处理器数量相等;
  6. 将除 allp[0] 之外的处理器 P 全部设置成 _Pidle 并加入到全局的空闲队列中;

调用 runtime.procresize 是调度器启动的最后一步,在这一步过后调度器会完成相应数量处理器的启动,等待用户创建运行新的 Goroutine 并为 Goroutine 调度处理器资源。

goroutine调度——GMP

Go 程序启动后,会给每个逻辑核心分配一个 P(Logical Processor);同时,会给每个 P 分配一个 M(Machine,表示内核线程),这些内核线程仍然由 OS scheduler 来调度。

当在本地启动一个 Go 程序时,会得到 4 个系统线程去执行任务,每个线程会搭配一个 P。

在初始化时,Go 程序会有一个 G(initial Goroutine),执行指令的单位。G 会在 M 上得到执行,内核线程是在 CPU 核心上调度,而 G 则是在 M 上进行调度。

G、P、M 都说完了,还有两个比较重要的组件没有提到: 全局可运行队列(GRQ)和本地可运行队列(LRQ)。 LRQ 存储本地(也就是具体的 P)的可运行 goroutine,GRQ 存储全局的可运行 goroutine,这些 goroutine 还没有分配到具体的 P。

在这里插入图片描述

其中:

  • G:表示 goroutine,每执行一次go f()就创建一个 G,包含要执行的函数和上下文信息。

  • 全局队列(Global Queue):存放等待运行的 G。

  • P:表示 goroutine 执行所需的资源,最多有 GOMAXPROCS 个。Processor的缩写,代表一个虚拟的处理器,它维护一个局部的可运行的 G 队列,可以通过 CAS 的方式无锁访问,工作线程 M 优先使用自己的局部运行队列中的 G,只有必要时才会去访问全局运行队列,这大大减少了锁冲突,提高了大量 G 的并发性。每个 G 要想真正运行起来,首先需要被分配一个 P。

  • P 的本地队列:同全局队列类似,存放的也是等待运行的G,存的数量有限,不超过256个。新建 G 时,G 优先加入到 P 的本地队列,如果本地队列满了会批量移动部分 G 到全局队列。

  • M:Machine的缩写,代表了内核线程 OS Thread,CPU调度的基本单元;线程想运行任务就得获取 P,从 P 的本地队列获取 G,当 P 的本地队列为空时,M 也会尝试从全局队列或其他 P 的本地队列获取 G。M 运行 G,G 执行之后,M 会从 P 获取下一个 G,不断重复下去。

Goroutine 调度器和操作系统调度器是通过 M 结合起来的,每个 M 都代表了1个内核线程,操作系统调度器负责把内核线程分配到 CPU 的核上执行。

单从线程调度讲,Go语言相比起其他语言的优势在于OS线程是由OS内核来调度的, goroutine 则是由Go运行时(runtime)自己的调度器调度的,完全是在用户态下完成的, 不涉及内核态与用户态之间的频繁切换,包括内存的分配与释放,都是在用户态维护着一块大的内存池, 不直接调用系统的malloc函数(除非内存池需要改变),成本比调度OS线程低很多。 另一方面充分利用了多核的硬件资源,近似的把若干goroutine均分在物理线程上, 再加上本身 goroutine 的超轻量级,以上种种特性保证了 goroutine 调度方面的性能。

Go scheduler 是 Go runtime 的一部分,它内嵌在 Go 程序里,和 Go 程序一起运行。因此它运行在用户空间,在 kernel 的上一层。和 Os scheduler 抢占式调度(preemptive)不一样,Go scheduler 采用协作式调度(cooperating)。

在这里插入图片描述
协作式调度一般会由用户设置调度点,例如 python 中的 yield 会告诉 Os scheduler 可以将我调度出去了。

但是由于在 Go 语言里,goroutine 调度的事情是由 Go runtime 来做,并非由用户控制,所以我们依然可以将 Go scheduler 看成是抢占式调度,因为用户无法预测调度器下一步的动作是什么。

和线程类似,goroutine 的状态也是三种(简化版的):

状态解释
Waiting等待状态,goroutine 在等待某件事的发生。例如等待网络数据、硬盘;调用操作系统 API;等待内存同步访问条件 ready,如 atomic, mutexes
Runnable就绪状态,只要给 M 我就可以运行
Executing运行状态。goroutine 在 M 上执行指令,这是我们想要的

给出一张,GPM 全局的运行示意图:

在这里插入图片描述

goroutine 调度时机有哪些

在四种情形下,goroutine 可能会发生调度,但也并不一定会发生,只是说 Go scheduler 有机会进行调度。

情形说明
使用关键字 gogo 创建一个新的 goroutine,Go scheduler 会考虑调度
GC由于进行 GC 的 goroutine 也需要在 M 上运行,因此肯定会发生调度。当然,Go scheduler 还会做很多其他的调度,例如调度不涉及堆访问的 goroutine 来运行。GC 不管栈上的内存,只会回收堆上的内存
系统调用当 goroutine 进行系统调用时,会阻塞 M,所以它会被调度走,同时一个新的 goroutine 会被调度上来
内存同步访问atomic,mutex,channel 操作等会使 goroutine 阻塞,因此会被调度走。等条件满足后(例如其他 goroutine 解锁了)还会被调度上来继续运行

什么是 M:N 模型

Go runtime 会负责 goroutine 的生老病死,从创建到销毁,都一手包办。Runtime 会在程序启动的时候,创建 M 个线程(CPU 执行调度的单位),之后创建的 N 个 goroutine 都会依附在这 M 个线程上执行。这就是 M:N 模型:

在这里插入图片描述
在同一时刻,一个线程上只能跑一个 goroutine。当 goroutine 发生阻塞时,runtime 会把当前 goroutine 调度走,让其他 goroutine 来执行。

什么是 workstealing

Go scheduler 的职责就是将所有处于 runnable 的 goroutines 均匀分布到在 P 上运行的 M。

当一个 P 发现自己的 LRQ 已经没有 G 时,会从其他 P “偷” 一些 G 来运行。这被称为 Work-stealing,Go 从 1.1 开始实现。

Go scheduler 使用 M:N 模型,在任一时刻,M 个 goroutines(G) 要分配到 N 个内核线程(M),这些 M 跑在个数最多为 GOMAXPROCS 的逻辑处理器(P)上。每个 M 必须依附于一个 P,每个 P 在同一时刻只能运行一个 M。如果 P 上的 M 阻塞了,那它就需要其他的 M 来运行 P 的 LRQ 里的 goroutines。

在这里插入图片描述
实际上,Go scheduler 每一轮调度要做的工作就是找到处于 runnable 的 goroutines,并执行它。找的顺序如下:

runtime.schedule() {
    // only 1/61 of the time, check the global runnable queue for a G.
    // if not found, check the local queue.
    // if not found,
    //     try to steal from other Ps.
    //     if not, check the global runnable queue.
    //     if not found, poll network.
}

找到一个可执行的 goroutine 后,就会一直执行下去,直到被阻塞。

当 P2 上的一个 G 执行结束,它就会去 LRQ 获取下一个 G 来执行。如果 LRQ 已经空了,就是说本地可运行队列已经没有 G 需要执行,并且这时 GRQ 也没有 G 了。这时,P2 会随机选择一个 P(称为 P1),P2 会从 P1 的 LRQ “偷” 过来一半的 G。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Generalzy

文章对您有帮助,倍感荣幸

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值