TypeError: __init__() got an unexpected keyword argument ‘is_valid_file‘

博客指出因torchvision版本较低,通过更换为高版本的虚拟环境解决了问题,聚焦于信息技术领域中软件版本适配问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

应该是torchvision的版本较低,换了一个高版本的虚拟环境,就可以了。

import os import matplotlib. pyplot as plt #%matplotlib inline import numpy as np import torch from torch import nn import torch. optim as optim import torchvision #pip install torchvision from torchvision import transforms, models, datasets #https://pytorch.org/docs/stable/torchvision/index.html import imageio import time import warnings warnings. filterwarnings("ignore") import random import sys import copy import json from PIL import Image data_dir = '.\preconditioning/left' #数据预处理 data_tranform ={ 'train': transforms.Compose([ transforms.Resize([224,224]), transforms.RandomRotation(45), transforms.CenterCrop(200), transforms.ToTensor(), transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225]) ]), 'valid': transforms.Compose([ transforms.Resize([224,224]), transforms.ToTensor(), transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225]) ]) } batch_size = 512 image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir),data_tranform[x])for x in ['train','valid']} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x],batch_size=batch_size,shutil=True)for x in ['train','valid']} dataset_size = {x: len(image_datasets[x])for x in ['train','valid']} class_names = image_datasets['traim'].classes上述代码爆出了以错误,请给出解决方案Traceback (most recent call last): File "D:\我的文档\Python\PythonProject2\TXSB\Lean.py", line 43, in <module> dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x],batch_size=batch_size,shutil=True)for x in ['train','valid']} File "D:\我的文档\Python\PythonProject2\TXSB\Lean.py", line 43, in <dictcomp> dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x],batch_size=batch_size,shutil=True)for x in ['train','valid']} TypeError: __init__() got an unexpected keyword argument 'shutil'
03-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值