【推荐系统】:LFM算法解析

基于矩阵的CF算法,一共有很多种,这里给大家解析一下,我们进行对用户对物品评分矩阵进行分解的原因是:我们可以对用户对物品评分矩阵进行分解,得到两个矩阵,一个矩阵是关于用户的,一个矩阵是关于物品的。这种情况下,用户矩阵的每一个用户自己都会对应着一个隐向量,每一个物品矩阵的物品也会有一个自己的有关自己的隐向量,而这些向量正好可以表示为用户自己,或者物品自己的一个特征,因此我们可以使用这些特征对用户或者物品进行聚类。常用的聚类算法有kmeans等等。下面我们来看看这些矩阵分解算法的具体实现:

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值