OpenCV--形态学

形态学

从图像中提取对表达和描绘区域形状有意义的图像分量

图像全局二值化

import cv2
import numpy as np
"""
图像全局二值化--0与255
二值化的主要目的是通过简化图像信息、增强对比度、分割目标物体、提取特征信息、去除噪声以及压缩存储和快速处理等方式,使图像更容易被计算机处理和分析
最好是灰度图
"""
img = cv2.imread('./img/cat.jpeg')
# 二值操作对灰度图像操作,先把图像变为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化 127:阈值, 255最大值, cv2.THRESH_BINARY操作类型
# 返回两个值,一个是阈值,一个是二值化处理后的图片
thresh, dst = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

cv2.imshow('cat', np.hstack((gray, dst)))

自适应阈值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醉后才知酒浓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值