形态学
从图像中提取对表达和描绘区域形状有意义的图像分量
图像全局二值化
import cv2
import numpy as np
"""
图像全局二值化--0与255
二值化的主要目的是通过简化图像信息、增强对比度、分割目标物体、提取特征信息、去除噪声以及压缩存储和快速处理等方式,使图像更容易被计算机处理和分析
最好是灰度图
"""
img = cv2.imread('./img/cat.jpeg')
# 二值操作对灰度图像操作,先把图像变为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值化 127:阈值, 255最大值, cv2.THRESH_BINARY操作类型
# 返回两个值,一个是阈值,一个是二值化处理后的图片
thresh, dst = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
cv2.imshow('cat', np.hstack((gray, dst)))
自适应阈值

最低0.47元/天 解锁文章
1519

被折叠的 条评论
为什么被折叠?



