水题

Ayush is a cashier at the shopping center. Recently his department has started a ''click and collect" service which allows users to shop online.

The store contains k items. n customers have already used the above service. Each user paid for m items. Let aij denote the j-th item in the i-th person's order.

Due to the space limitations all the items are arranged in one single row. When Ayush receives the i-th order he will find one by one all the items aij (1 ≤ j ≤ m) in the row. Let pos(x) denote the position of the item x in the row at the moment of its collection. Then Ayush takes time equal to pos(ai1) + pos(ai2) + ... + pos(aim) for the i-th customer.

When Ayush accesses the x-th element he keeps a new stock in the front of the row and takes away the x-th element. Thus the values are updating.

Your task is to calculate the total time it takes for Ayush to process all the orders.

You can assume that the market has endless stock.

Input

The first line contains three integers nm and k (1 ≤ n, k ≤ 100, 1 ≤ m ≤ k) — the number of users, the number of items each user wants to buy and the total number of items at the market.

The next line contains k distinct integers pl (1 ≤ pl ≤ k) denoting the initial positions of the items in the store. The items are numbered with integers from 1 to k.

Each of the next n lines contains m distinct integers aij (1 ≤ aij ≤ k) — the order of the i-th person.

Output

Print the only integer t — the total time needed for Ayush to process all the orders.

Example
Input
2 2 5
3 4 1 2 5
1 5
3 1
Output
14
Note

Customer 1 wants the items 1 and 5.

pos(1) = 3, so the new positions are: [1, 3, 4, 2, 5].

pos(5) = 5, so the new positions are: [5, 1, 3, 4, 2].

Time taken for the first customer is 3 + 5 = 8.

Customer 2 wants the items 3 and 1.

pos(3) = 3, so the new positions are: [3, 5, 1, 4, 2].

pos(1) = 3, so the new positions are: [1, 3, 5, 4, 2].

Time taken for the second customer is 3 + 3 = 6.

Total time is 8 + 6 = 14.

Formally pos(x) is the index of x in the current row.


#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<string.h>
#include<string>
#include<iostream>
#include<stack>
#include<queue>
#include<map>
#define pi 3.1415926
using namespace std;
int main()
{
    int n,m,k;
    int a[105];
    int b[10005];         //cf上会把数组越界当成超时的。认真认真,再认真。
    scanf("%d%d%d",&n,&m,&k);
    for(int i=1;i<=k;i++)
        scanf("%d",&a[i]);
    for(int i=1;i<=n*m;i++)
    scanf("%d",&b[i]);
    int sum=0;int s,j;
    for(int i=1;i<=n*m;i++)
    {
        for(j=1;j<=k;j++)
        {
            if(b[i]==a[j])
                break;
        }
        s=a[j];
        sum+=j;
        for(int z=j;z>=2;z--)
        a[z]=a[z-1];
        a[1]=s;
    }
        printf("%d\n",sum);
}

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值