目录
- 设计任务及要求………………………………………………1
- 语音识别的简单介绍
2.1语者识别的概念……………………………………………2
2.2特征参数的提取……………………………………………3
2.3用矢量量化聚类法生成码本………………………………3
2.4VQ的说话人识别 …………………………………………4
- 算法程序分析
3.1函数关系………………………………………………….4
3.2代码说明……………………………………………………5
3.2.1函数mfcc………………………………………………5
3.2.2函数disteu……………………………………………5
3.2.3函数vqlbg…………………………………………….6
3.2.4函数test………………………………………………6
3.2.5函数testDB……………………………………………7
3.2.6 函数train……………………………………………8
3.2.7函数melfb………………………………………………8
- 演示分析…………………………………………………….9
- 心得体会…………………………………………………….11
附:GUI程序代码………………………………………………12
- 设计任务及要求
用MATLAB实现简单的语音识别功能;
具体设计要求如下:
用MATLAB实现简单的数字1~9的语音识别功能。
- 语音识别的简单介绍
基于VQ的说话人识别系统,矢量量化起着双重作用。在训练阶段,把每一个说话者所提取的特征参数进行分类,产生不同码字所组成的码本。在识别(匹配)阶段,我们用VQ方法计算平均失真测度(本系统在计算距离d时,采用欧氏距离测度),从而判断说话人是谁。
语音识别系统结构框图如图1所示。
图1 语音识别系统结构框图
2.1语者识别的概念
语者识别就是根据说话人的语音信号来判别说话人的身份。语音是人的自然属性之一,由于说话人发音器官的生理差异以及后天形成的行为差异,每个人的语音都带有强烈的个人色彩,这就使得通过分析语音信号来识别说话人成为可能。用语音来鉴别说话人的身份有着许多独特的优点,如语音是人的固有的特征,不会丢失或遗忘;语音信号的采集方便,系统设备成本低;利用网络还可实现远程客户服务等。因此,近几年来,说话人识别越来越多的受到人们的重视。与其他生物识别技术如指纹识别、手形识别等相比较,说话人识别不仅使用方便,而且属于非接触性,容易被用户接受,并且在已有的各种生物特征识别技术中,是唯一可以用作远程验证的识别技术。因此,说话人识别的应用前景非常广泛:今天,说话人识别技术已经关系到多学科的研究领域,不同领域中的进步都对说话人识别的发展做出了贡献。说话人识别技术是集声学、语言学、计算机、信息处理和人工智能等诸多领域的一项综合技术,应用需求将十分广阔。在吃力语音信号的时候如何提取信号中关键的成分尤为重要。语音信号的特征参数的好坏直接导致了辨别的准确性。
2.2特征参数的提取
对于特征参数的选取,我们使用mfcc的方法来提取。MFCC参数是基于人的听觉特性利用人听觉的屏蔽效应,在Mel标度频率域提取出来的倒谱特征参数。
MFCC参数的提取过程如下:
- 对输入的语音信号进行分帧、加窗,然后作离散傅立叶变换,获得频谱分布信息。
设语音信号的DFT为:
(1)
其中式中x(n)为输入的语音信号,N表示傅立叶变换的点数。
- 再求频谱幅度的平方,得到能量谱。
- 将能量谱通过一组Mel尺度的三角形滤波器组。
我们定义一个有M个滤波器的滤波器组(滤波器的个数和临界带的个数相近),采用的滤波器为三角滤波器,中心频率为f(m),m=1,2,3,···,M
本系统取M=100。
- 计算每个滤波器组输出的对数能量。
(2)
其中
为三角滤波器的频率响应。
- 经过离散弦变换(DCT)得到MFCC系数。
MFCC系数个数通常取20—30,常常不用0阶倒谱系数,因为它反映的是频谱能量,故在一般识别系统中,将