Matlab 车牌识别技术

Matlab 车牌识别技术

1.1设计内容及要求:

课题研究的主要内容是对数码相机拍摄的车牌,进行基于数字图像处理技术的车牌定位技术和车牌字符分割技术的研究与开发,涉及到图像预处理、车牌定位、倾斜校正、字符分割等方面的知识,总流程图如图1-1所示。

图1-1系统总流程图

1.2方案

1、车牌图像的定位。分析了车牌定位的基本原理和现有的定位方法,利用图像处理的技术,提出了基于数学形态学与边缘检测以及颜色相结合的车牌定位方法。最后对车牌定位实验结果进行分析。

2、倾斜校正。分析了倾斜校正的基本原理和一些倾斜校正方法,并对实验结果进行分析。

3、车牌字符分割。分析了各种字符分割算法,然后对分割出的车牌图像进行灰度化、灰度拉伸、二值化、去边框处理等一系列预处理后,提出了一种

基于模板匹配与垂直投影相结合的字符分割方法。最后对字符分割实验结果进行了分析。

设计原理及设计方案

课题研究的主要内容是对数码相机拍摄的车牌,进行基于数字图像处理技术的车牌定位技术和车牌字符分割技术的研究与开发,涉及到图像预处理、车牌定位、倾斜校正、字符分割等方面的知识,总流程图如图2-1所示,其中车牌定位的流程图如图2-2所示,字符分割与归一化的流程图如图2-3所示。

图2-1系统总流程图


图2-2 车牌定位的流程图

图2-3 字符分割与归一化流程图

设计的步骤和结果

3.1 图像灰度变换

灰度图指的是包含光亮程度,但没有色彩信息的图片,比如亮度持续变化的黑白图像就是一张灰度图。灰度变换就是将有色彩的图像转化为只有光亮度的图像。色彩图片分为R、G、B 三个量,依次对应着红、绿、蓝等三种颜色,灰度变换就是将R、G、B 三个分量变为一个等值的过程。像素点越亮的灰度值越大(显白色时像素值最大的为255),相反则越暗(显黑色时像素值为0)。要把原来的彩图变化为用灰度表示时,其图像的灰度变换的值可以用下面两个公式计算:

第一个式子用的是权值加重的方法,第二个式子用的是均值法。Matlab中的R、G、B转灰度的函数rgb2gray① 使用的就是第一个式子权值加重[6]。

对应代码实现如下:

Scolor=imread([pn fn]);

figure,imshow(Scolor),title('原始图像');

Sgray = rgb2gray(Scolor);%rgb2gray转换成灰度图

figure;imshow(Sgray);title('灰度图')

3.2 图像边缘检测

图像边缘是指图片的灰度空间突变或梯度上突变的全部像素组合。接下来在车牌定位与字符的识别前我们需先对图片做边缘检测处理,提升图像像素,让图像更容易接下来的后续操作。在进行完边缘检测处理之后,能在相当程度上压低噪声影响、切割出车牌区域、留下完整车牌字符,使其方便接下来的定位与识别。

根据牌照字符识别所用的图像采集仪器基本装在固有的位置和车牌的特有属性,相对容易看出汽车车牌一般都在一个水平的长方形区域里,位置范围基本比较固定,而且牌照里的字符基本都在一水平方向上。因此,再进行一些转换,容易清晰的呈出车牌区域的边缘。本次系统设计采用了Roberts算子来对图像进行边缘检测。还有别的算法如Sobel算子和拉普拉斯算子等。

Roberts算子是通过对图像局部做差分处理来寻找图像边缘的,使用互为九十度角上的差分来估计梯度,Roberts算子则是采用对角方向相邻两像素之差,

其幅值为:

grd=edge(Egray,'canny',0.09,'both');

figure,imshow(grd);title('robert算子边缘检测');

3.3 车牌定位

基于Matlab车牌识别设计与实现的关键的是牌照位置标记与车牌分割,在整幅图像中先通过合适的算法去提取图像,得到牌照的位置然后再进行平滑、灰度与二值化等处理接着再对提取出来的图片进行分割得到字符。

定位与分割牌照和二值化处理是本次毕业设计的几个重要技术,其主要是为了将已经过前期预处理后所得到的灰度图象中车牌的区域显示出来,接着把包括车牌符号的那块区域图象从处理过的原始图象中提取出来,再由程序的子系统进行识别,要是能准确的切割出车牌的位置就能更好的提升整个程序识别的效率。而且由于车牌图片是初始图片中一个相对突出的子区域图像,简单的概况就是一个水平度比较高近似矩形的横区域图。它在原图中所占的位置相对比较集中,且其灰度值与原图的其它区域也有很大的区别,因此在其边缘就形成了一个灰度有很大变化的区域边界,这样也就有利于我们直接通过边缘检测对图象进行分割。而汽车车牌的二值化处理是字符分割方法中一个非常重要的步骤。

实现代码如下:

[y,x,]=size(bg2);

I6=double(bg2);

%绘制行曲线图

Y1=zeros(y,1);%y行1列的零矩阵

for i=1:y

for j=1:x

if(I6(i,j,1)==1)

Y1(i,1)= Y1(i,1)+1;

end

end

end

[temp, MaxY]=max(Y1);

PY1=MaxY;

while ((Y1(PY1,1)>=50)&&(PY1>1))

PY1=PY1-7;

end

PY2=MaxY;

while ((Y1(PY2,1)>=50)&&(PY2<y))

PY2=PY2+7;

end

%绘制列曲线图

X1=zeros(1,x);

for j=1:x

for i=PY1:PY2

if(I6(i,j,1)==1)

X1(1,j)= X1(1,j)+1;

end

end

end

PX1=1;

while ((X1(1,PX1)<3)&&(PX1<x))

PX1=PX1+1;

end

PX2=x;

while ((X1(1,PX2)<3)&&(PX2>PX1))

PX2=PX2-1;

end

DW=Scolor(PY1:PY2,PX1:PX2,:);

%subplot(1,3,3);

figure,imshow(DW),title('车牌定位后图像');

3.4 车牌的二值化

车牌二值化处理是决定字符分割好坏非常重要的一个步骤,所谓二值化实际上就是把原图中的每个像素点的分别设置为0或255两个值,简单来说就是把整副原图转换成黑白图像。这个二值化主要是在灰度的基础上实际也就是取一个比较合适的值,将字符准确地从车牌中分割出来。过程大致就是选取一个合适的值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值