hdu 2473 Junk-Mail Filter(删除节点操作的并查集)

本文介绍了一种通过数据特征提取和匹配来识别垃圾邮件的方法。利用并查集算法处理多个垃圾邮件样本之间的相似性和误判情况,实现了高效地更新和维护不同邮件间的特征关系。
AI助手已提取文章相关产品:

Junk-Mail Filter

Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5997    Accepted Submission(s): 1907


Problem Description
Recognizing junk mails is a tough task. The method used here consists of two steps:
1) Extract the common characteristics from the incoming email.
2) Use a filter matching the set of common characteristics extracted to determine whether the email is a spam.

We want to extract the set of common characteristics from the N sample junk emails available at the moment, and thus having a handy data-analyzing tool would be helpful. The tool should support the following kinds of operations:

a) “M X Y”, meaning that we think that the characteristics of spam X and Y are the same. Note that the relationship defined here is transitive, so
relationships (other than the one between X and Y) need to be created if they are not present at the moment.

b) “S X”, meaning that we think spam X had been misidentified. Your tool should remove all relationships that spam X has when this command is received; after that, spam X will become an isolated node in the relationship graph.

Initially no relationships exist between any pair of the junk emails, so the number of distinct characteristics at that time is N.
Please help us keep track of any necessary information to solve our problem.
 

Input
There are multiple test cases in the input file.
Each test case starts with two integers, N and M (1 ≤ N ≤ 105 , 1 ≤ M ≤ 106), the number of email samples and the number of operations. M lines follow, each line is one of the two formats described above.
Two successive test cases are separated by a blank line. A case with N = 0 and M = 0 indicates the end of the input file, and should not be processed by your program.
 

Output
For each test case, please print a single integer, the number of distinct common characteristics, to the console. Follow the format as indicated in the sample below.
 

Sample Input
5 6 M 0 1 M 1 2 M 1 3 S 1 M 1 2 S 3 3 1 M 1 2 0 0
 

Sample Output
Case #1: 3 Case #2: 2
 

题意:
M:把两个数合并到同一个集合中,
S:把一个数从这个集合中删除(其他本来在这个集合中得数都仍属于这个集合,不管和这个数有没关联)
输出:集合的个数

思路(如何删除节点不影响该节点下面的点):
把被删掉的那个点设为虚点,并新建一个点,把原来的点映射到这个新点上,用real[a]表示a映射过去的点,没有映射的仍是它本身。有了映射以后的操作都是对这个新点进行操作的。最后数一下根节点的个数就是集合数。

#include 
#include 
#include 
#include 
using namespace std;

int fa[1000010],real[1000010];//fa[ ]数组应该开到10^6
int vis[1000010],ans=0;

int find(int x)
{
	return x==fa[x]?x:fa[x]=find(fa[x]);
}

int main()
{
	int n,m,number=0;
	while(scanf("%d%d",&n,&m)!=EOF)
	{
		if(n==0 && m==0)
		{
			break;
		}
		for(int i=0;i


您可能感兴趣的与本文相关内容

【论文复现】一种基于价格弹性矩阵的居民峰谷分时电价激励策略【需求响应】(Matlab代码实现)内容概要:本文介绍了一种基于价格弹性矩阵的居民峰谷分时电价激励策略,旨在通过需求响应机制优化电力系统的负荷分布。该研究利用Matlab进行代码实现,构建了居民用电行为与电价变动之间的价格弹性模型,通过分析不同时间段电价调整对用户用电习惯的影响,设计合理的峰谷电价方案,引导用户错峰用电,从而实现电网负荷的削峰填谷,提升电力系统运行效率与稳定性。文中详细阐述了价格弹性矩阵的构建方法、优化目标函数的设计以及求解算法的实现过程,并通过仿真验证了所提策略的有效性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力,从事需求响应、电价机制研究或智能电网优化等相关领域的科研人员及研究生。; 使用场景及目标:①研究居民用电行为对电价变化的响应特性;②设计并仿真基于价格弹性矩阵的峰谷分时电价激励策略;③实现需求响应下的电力负荷优化调度;④为电力公司制定科学合理的电价政策提供理论支持和技术工具。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解价格弹性建模与优化求解过程,同时可参考文中方法拓展至其他需求响应场景,如工业用户、商业楼宇等,进一步提升研究的广度与深度。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值