Ultra-QuickSort
Time Limit: 7000MS | Memory Limit: 65536K | |
Total Submissions: 49181 | Accepted: 17995 |
Description

Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence
element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
给出n个数,问你逆序数有多少对。注意数据范围,要将数据离散话并且ans要用long long。
AC代码:
#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
using namespace std;
const int MAXN = 500005;
int n, c[MAXN], num[MAXN];
struct node
{
/* data */
int v, flag;
}a[MAXN];
bool cmp(node a, node b)
{
return a.v < b.v;
}
int lowbit(int x)
{
return x & (-x);
}
void updata(int x)
{
for(int i = x; i <= n; i += lowbit(i))
c[i] += 1;
}
int get_sum(int x)
{
int sum = 0;
for(int i = x; i > 0; i -= lowbit(i))
sum += c[i];
return sum;
}
int main(int argc, char const *argv[])
{
while(scanf("%d", &n) != EOF && n) {
memset(c, 0, sizeof(c));
for(int i = 1; i <= n; ++i) {
scanf("%d", &a[i].v);
a[i].flag = i;
}
sort(a + 1, a + 1 + n, cmp);
for(int i = 1; i <= n; ++i)
num[a[i].flag] = i;
long long ans = 0;
for(int i = 1; i <= n; ++i) {
updata(num[i]);
ans += i - get_sum(num[i]);
}
printf("%lld\n", ans);
}
return 0;
}