目录
1.3、 函数间隔(Functional margin)与几何间隔 (Geometrical margin)
一.支持向量机简介
支持向量机(Support Vector Machine,简称SVM)是一种广泛应用于分类和回归分析的监督学习算法。其基本原理是通过在特征空间中找到一个最优的超平面,将不同类别的数据点分隔开。
在二分类问题中,SVM的目标是找到一个能够将两类数据点分隔开的超平面,使得两侧距离最近的数据点到超平面的距离(即间隔)最大。这些最靠近超平面的数据点被称为支持向量。超平面的选择不仅要使得间隔最大,还要满足不同类别的数据点被正确分类,即位于超平面两侧的点应被分到不同的类别。
SVM可以通过核函数来处理非线性问题,将数据映射到高维空间,从而找到一个在高维空间中的超平面来完成分类。常用的核函数有线性核、多项式核、径向基核等。SVM在实际应用中表现出色,尤其在数据维度较高、样本数量不是很大的情况下。它对于处理线
性和非线性问题都有很好的效果,是一个强大而灵活的分类算法。
二.算法原理
1.1、什么是支持向量机
支持向量机(support vector machines,SVM)是一种二分类模型,它的目的是寻找一个超平面来对样本进行分割,分割的原则是间隔最大化,最终转化为一个凸二次规划问题来求解。
1.2、一个线性相关的例子
下面举个简单的例子,如下图所示,现在有一个二维平面,平面上有两种不同的数据,分别用圈和叉表示。由于这些数据是线性可分的,所以可以用一条直线将这两类数据分开,这条直线就相当于一个超平面,超平面一边的数据点所对应的y全是 -1 ,另一边所对应的y全是1。
接下来的问题是,如何确定这个超平面呢?从直观上而言,这个超平面应该是最适合分开两类数据的直线。而判定“最适合”的标准就是这条直线离直线两边的数据的间隔最大。所以,得寻找有着最大间隔的超平面。
1.3、 函数间隔(Functional margin)与几何间隔 (Geometrical margin)
在超平面w*x+b=0确定的情况下,|w*x+b|能够表示点x到距离超平面的远近,而通过观察w*x+b的符号与类标记y的符号是否一致可判断分类是否正确,所以,可以用(y*(w*x+b))的正负性来判定或表示分类的正确性。于此,我们便引出了函数间隔(functional margin)的概念。
定义函数间隔为:
而超平面(w,b)关于数据集T中所有样本点(xi,yi)的函数间隔最小值(其中,x是特征,y是结果标签,i表示第i个样本),便为超平面(w, b)关于训练数据集T的函数间隔:
但这样定义的函数间隔有问题,即如果成比例的改变w和b(如将它们改成2w和2b),则函数间隔的值f(x)却变成了原来的2倍(虽然此时超平面没有改变),所以只有函数间隔还远远不够。
事实上,我们可以对法向量w加些约束条件,从而引出真正定义点到超平面的距离--几何间隔(geometrical margin)的概念。
假定对于一个点 x ,令其垂直投影到超平面上的对应点为 x0 ,w 是垂直于超平面的一个向量,为样本x到分类间隔的距离,如下图所示:
可以看出:几何间隔就是函数间隔除以||w||,而且函数间隔y*(wx+b) = y*f(x)实际上就是|f(x)|,只是人为定义的一个间隔度量,而几何间隔|f(x)|/||w||才是直观上的点到超平面的距离。