import tensorflow as tf
import matplotlib.pyplot as plt
learning_rate = 0.1
decay_rate = 0.99
global_steps = 1000
decay_steps = 100
global_ = tf.placeholder(tf.int32)
c = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=True)
d = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=False)
T_C = []
T_D = []
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(global_steps):
T_c = sess.run(c,feed_dict={global_: i})
T_C.append(T_c)
T_d = sess.run(d,feed_dict={global_: i})
T_D.append(T_d)
plt.figure(1)
plt.plot(range(global_steps), T_D, 'r-')
plt.plot(range(global_steps), T_C, 'b-')
plt.show()
参考:http://blog.youkuaiyun.com/uestc_c2_403/article/details/72356448
本文通过Python代码示例介绍了如何使用TensorFlow实现学习率的指数衰减,并通过matplotlib绘制了衰减过程的图表。
1405

被折叠的 条评论
为什么被折叠?



