文章目录
102. 二叉树的层序遍历
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
//每一层遍历结束后是一个数组,最后输出的是一个二维数组
public List<List<Integer>> resList = new ArrayList<List<Integer>>();
public List<List<Integer>> levelOrder(TreeNode root) {
checkfun(root);
return resList;
//使用迭代法(用一个队列来模拟),实现二叉树的层序遍历
}
public void checkfun (TreeNode node){
if(node == null){
return;
}
Queue<TreeNode> que = new LinkedList<TreeNode>();
que.offer(node);
while(!que.isEmpty()){
//当队列非空的时候,则不断弹出队首node
//在创建一个数组用来接收每一层的结果
List<Integer> itemList = new ArrayList<Integer>();
//取得队列中元素的个数
int len = que.size();
while(len > 0){
TreeNode temp = que.poll();
itemList.add(temp.val);
if(temp.left!= null){
que.offer(temp.left);
}
if(temp.right!= null){
que.offer(temp.right);
}
len--;
}
resList.add(itemList);
}
}
}
107. 二叉树的层序遍历 II
107. 二叉树的层序遍历 II
本题和第一题较为类似,最后将每层的得到的数组再倒序一次即可
class Solution {
//首先创建一个二维数组来存放最终的结果
//在创建一个队列
public List<List<Integer>> levelOrderBottom(TreeNode root) {
Deque<TreeNode> que = new LinkedList<>();
List<List<Integer>> resList = new ArrayList<>();
if(root == null){
return resList;
}
//首先在队列中加入root节点
que.offerLast(root);
while(!que.isEmpty()){
//再创建一个数组用来存放每层遍历的结果 **注意创建层序遍历存放的数组应该放在while循环中,每次都会创建一个新的层序遍历数组
List<Integer> itemList = new ArrayList<>();
int len = que.size();
for (int i = 0; i < len; i++) {
//当队列非空的时候
TreeNode temp = que.peekFirst();
itemList.add(que.pollFirst().val);
if(temp.left != null){
que.offerLast(temp.left);
}
if(temp.right != null){
que.offerLast(temp.right);
}
}
resList.add(itemList);
}
//现在resList中存在着正序的层序遍历结果,接下来要将这个二维数组翻转
List<List<Integer>> result = new ArrayList<>();
for(int i = resList.size()-1 ;i >= 0 ; i--){
result.add(resList.get(i));
}
return result;
}
}
199. 二叉树的右视图
class Solution {
public List<Integer> rightSideView(TreeNode root) {
//层序遍历的时候,判断是否遍历到单层的最后面的元素,如果是,就放进result数组中,随后返回result就可以了。
//创建一个队列和二维数组
Deque<TreeNode> que = new LinkedList<>();
List<Integer> list = new ArrayList<>();
if(root == null){
return list;
}
que.offerLast(root);
while(!que.isEmpty()){
int levelSize = que.size();
for (int i = 0; i < levelSize; i++) {
TreeNode temp = que.pollFirst();
if(temp.left != null){
que.addLast(temp.left);
}
if(temp.right != null){
que.addLast(temp.right);
}
if(i == levelSize - 1){
//通过i的值来判断是否是层序的最后一个
list.add(temp.val);
}
}
}
return list;
}
}
637. 二叉树的层平均值
class Solution {
public List<Double> averageOfLevels(TreeNode root) {
Deque<TreeNode> que = new LinkedList<>();
List<Double> list = new ArrayList<>();
if(root == null){
return list;
}
que.offerLast(root);
while(!que.isEmpty()){
int len = que.size();
double sum = 0.0;
for(int i = 0;i < len ; i++){
TreeNode temp = que.pollFirst();
//pollFirt?和pollLast?
sum += temp.val;
if(temp.left != null){
que.offerLast(temp.left);
}
if(temp.right != null){
que.offerLast(temp.right);
}
}
list.add(sum / len);
}
return list;
}
}
429. N 叉树的层序遍历
/*
// Definition for a Node.
class Node {
public int val;
public List<Node> children;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, List<Node> _children) {
val = _val;
children = _children;
}
};
*/
class Solution {
public List<List<Integer>> levelOrder(Node root) {
//依旧是层序遍历,只不过孩子节点的个数变了
List<List<Integer>> reslist = new ArrayList<>();
Deque<Node> que = new LinkedList<>();
if (root == null){
return reslist;
}
que.offerLast(root);
while(!que.isEmpty()){
int len = que.size();
//创建层序遍历数组
List<Integer> list = new ArrayList<>();
for(int i = 0; i < len; i++){
Node temp = que.pollFirst();
list.add(temp.val);
//创建孩子节点的数组
List<Node> children = temp.children;
if (children == null || children.size() == 0) {
continue;
}
//将所有孩子节点加入到队列中
for (Node child : children) {
if (child != null) {
que.offerLast(child);
}
}
}
reslist.add(list);
}
return reslist;
}
}
515. 在每个树行中找最大值
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> largestValues(TreeNode root) {
//层序遍历,取每一层的最大值
if(root == null){
return Collections.emptyList();
}
List<Integer> result = new ArrayList();
Queue<TreeNode> queue = new LinkedList();
queue.offer(root);
while(!queue.isEmpty()){
int max = Integer.MIN_VALUE;
for(int i = queue.size(); i > 0; i--){
TreeNode node = queue.poll();
max = Math.max(max, node.val);
if(node.left != null) queue.offer(node.left);
if(node.right != null) queue.offer(node.right);
}
result.add(max);
}
return result;
}
}
116. 填充每个节点的下一个右侧节点指针
/*
// Definition for a Node.
class Node {
public int val;
public Node left;
public Node right;
public Node next;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, Node _left, Node _right, Node _next) {
val = _val;
left = _left;
right = _right;
next = _next;
}
};
*/
class Solution {
public Node connect(Node root) {
if (root == null) {
return root;
}
// 初始化队列同时将第一层节点加入队列中,即根节点
Queue<Node> queue = new LinkedList<Node>();
queue.add(root);
// 外层的 while 循环迭代的是层数
while (!queue.isEmpty()) {
// 记录当前队列大小
int size = queue.size();
// 遍历这一层的所有节点
for (int i = 0; i < size; i++) {
// 从队首取出元素
Node node = queue.poll();
// 连接
if (i < size - 1) {
node.next = queue.peek();
}
// 拓展下一层节点
if (node.left != null) {
queue.add(node.left);
}
if (node.right != null) {
queue.add(node.right);
}
}
}
// 返回根节点
return root;
}
}
117. 填充每个节点的下一个右侧节点指针 II
/*
// Definition for a Node.
class Node {
public int val;
public Node left;
public Node right;
public Node next;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, Node _left, Node _right, Node _next) {
val = _val;
left = _left;
right = _right;
next = _next;
}
};
*/
class Solution {
public Node connect(Node root) {
//本题和116完全二叉树的填充右侧节点有相似之处
Queue<Node> que = new LinkedList<>();
if(root != null){
que.add(root);
}
while(!que.isEmpty()){
int size = que.size();
//创建两个指针
Node prenode = null;
Node node = null;
for(int i = 0 ; i < size ; i ++){
if(i == 0){
node = que.poll();
prenode = node;
}
else {
node = que.poll();
prenode.next = node;
prenode = node;
}
if(node.left != null){
que.add(node.left);
}
if(node.right != null){
que.add(node.right);
}
}
prenode.next = null;
}
return root;
}
}
104. 二叉树的最大深度
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
//使用层序遍历来求解
Queue<TreeNode> que = new LinkedList<>();
if(root == null){
return 0;
}
que.offer(root);
int depth = 0;
while(!que.isEmpty()){
int len = que.size();
while(len > 0){
TreeNode temp = que.poll();
if(temp.left != null){
que.offer(temp.left);
}
if(temp.right != null){
que.offer(temp.right);
}
len--;
}
depth++;
}
return depth;
}
}
方法2:迭代处理
class Solution {
public:
int maxDepth(TreeNode* root) {
//二叉树的题有两种思路,1是遍历二叉树,2是将分体分解成小问题,迭代处理
//此次采用第二种方法,分解问题的方式
if(root==nullptr){
return 0;
}
//设定一个函数,输入二叉树,返回最大深度
int left=maxDepth(root->left);
int right=maxDepth(root->right);
int res = max(left,right)+1;
return res;
}
};
111. 二叉树的最小深度
[111. 二叉树的最小深度](ht tps://leetcode.cn/problems/minimum-depth-of-binary-tree/)
class Solution {
public int minDepth(TreeNode root){
if (root == null) {
return 0;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
int depth = 0;
while (!queue.isEmpty()){
int size = queue.size();
depth++;
TreeNode cur = null;
for (int i = 0; i < size; i++) {
cur = queue.poll();
//如果当前节点的左右孩子都为空,直接返回最小深度
if (cur.left == null && cur.right == null){
return depth;
}
if (cur.left != null) queue.offer(cur.left);
if (cur.right != null) queue.offer(cur.right);
}
}
return depth;
}
}