本文主要是了解为主,可能实际项目开发中不是很常用
1. 修改 microservicecloud-consumer-dept-80
2. 主启动类添加 @RibbonClient
@RibbonClient(name="MICROSERVICECLOUD-DEPT",configuration=MySelfRule.class)
3. 配置细节
这个自定义配置类不能放在@ComponentScan所扫描的当前包下以及子包下,否则我们自定义的这个配置类就会被所有的Ribbon客户端所共享,也就是说我们达不到特殊化定制的目的了。主配置类的注解就是包含@ComponentScan,所以自定义的类不能再主配置类所在的包下以及子包下!
4. 步骤
(1)自定义类
新建package com.atguigu.myrule,新建自定义Robbin规则类
package com.atguigu.myrule;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import com.netflix.loadbalancer.IRule;
import com.netflix.loadbalancer.RandomRule;
@Configuration
public class MySelfRule
{
@Bean
public IRule myRule()
{
return new RandomRule();//Ribbon默认是轮询,我自定义为随机
}
}
(2)修改主配置类
package com.atguigu.springcloud;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.netflix.ribbon.RibbonClient;
import com.atguigu.myrule.MySelfRule;
@SpringBootApplication
@EnableEurekaClient
@RibbonClient(name="MICROSERVICECLOUD-DEPT",configuration=MySelfRule.class)
public class DeptConsumer80_App
{
public static void main(String[] args)
{
SpringApplication.run(DeptConsumer80_App.class, args);
}
}
(3)测试
http://localhost/consumer/dept/list
总结:经过上面的配置完成对于特定的微服务采用特定的负载均衡策略
5. 自定义策略
(1)策略:依旧轮询策略,但是加上新需求,每个服务器要求被调用5次。也即以前是每台机器一次,现在是每台机器5次
(2)解析源码
https://github.com/Netflix/ribbon/blob/master/ribbon-loadbalancer/src/main/java/com/netflix/loadbalancer/RandomRule.java
(3)参考源码修改为我们需求要求的RandomRule_ZY.java
package com.atguigu.myrule;
import java.util.List;
import java.util.Random;
import com.netflix.client.config.IClientConfig;
import com.netflix.loadbalancer.AbstractLoadBalancerRule;
import com.netflix.loadbalancer.ILoadBalancer;
import com.netflix.loadbalancer.Server;
public class RandomRule_ZY extends AbstractLoadBalancerRule {
private int total = 0; //总共被调用的次数,目前要求每台被调用5次
private int currentIndex = 0;//当前提供服务的机器号
public Server choose(ILoadBalancer lb, Object key) {
if (lb == null) {
return null;
}
Server server = null;
while (server == null) {
if (Thread.interrupted()) {
return null;
}
List<Server> upList = lb.getReachableServers();
List<Server> allList = lb.getAllServers();
int serverCount = allList.size();
if (serverCount == 0) {
/*
* No servers. End regardless of pass, because subsequent passes
* only get more restrictive.
*/
return null;
}
// int index = rand.nextInt(serverCount);
// server = upList.get(index);
if(total < 5)
{
server = upList.get(currentIndex);
total++;
}else {
total = 0;
currentIndex++;
if(currentIndex >= upList.size())
{
currentIndex = 0;
}
}
if (server == null) {
/*
* The only time this should happen is if the server list were
* somehow trimmed. This is a transient condition. Retry after
* yielding.
*/
Thread.yield();
continue;
}
if (server.isAlive()) {
return (server);
}
// Shouldn't actually happen.. but must be transient or a bug.
server = null;
Thread.yield();
}
return server;
}
@Override
public Server choose(Object key) {
return choose(getLoadBalancer(), key);
}
@Override
public void initWithNiwsConfig(IClientConfig clientConfig) {
}
}
(4)MySelfRule.java
package com.atguigu.myrule;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import com.netflix.loadbalancer.IRule;
import com.netflix.loadbalancer.RandomRule;
@Configuration
public class MySelfRule
{
@Bean
public IRule myRule()
{
//return new RandomRule();//Ribbon默认是轮询,我自定义为随机
return new RandomRule_ZY();//我自定义为每个机器被访问5次
}
}
(5)启动测试
http://localhost/consumer/dept/list
【提示】我们可以看到自定义策略,主要在于策略的编写!这里面了解即可。作者水平有限。。。哈~
本文主要介绍微服务中自定义Ribbon负载均衡策略,包括修改主启动类添加 @RibbonClient、配置自定义类的注意事项、具体步骤及测试。还给出了自定义策略,如每台服务器被调用5次的轮询策略,强调自定义策略关键在于策略编写,了解即可。
7545

被折叠的 条评论
为什么被折叠?



