A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
使用DP,下面是我的代码,算法正确,但是刚开始没有考虑好边界情况,我这数组0号位置是空的,应该从1号位置开始,2后位置由1号位置来求得。
class Solution {
public:
int uniquePaths(int m, int n) {
if(m == 1 || n == 1)
return 1;
vector<vector<int>> A(m+1, vector<int>(n+1, 0));
for(int i=1; i<=m; ++i)
A[i][1] = 1;
for(int i=1; i<=n; ++i)
A[1][i] = 1;
for(int i=2; i<=m; ++i){
for(int j=2; j<=n; ++j){
if(i != j){
A[i][j] = A[i-1][j] + A[i][j-1];
}
else{
A[i][j] = A[i-1][j] * 2;
}
}
}
return A[m][n];
}
};
class Solution {
int uniquePaths(int m, int n) {
vector<vector<int> > path(m, vector<int> (n, 1));
for (int i = 1; i < m; i++)
for (int j = 1; j < n; j++)
path[i][j] = path[i - 1][j] + path[i][j - 1];
return path[m - 1][n - 1];
}
};因为不管哪个方向,都是相加,乘以2可以合并的。PS:今天多刷一道,因为之前的那一道太简单。
本文探讨了一个机器人在限定网格内从左上角到右下角的不同路径数量问题,并提供了两种使用动态规划解决该问题的C++代码实现。
334

被折叠的 条评论
为什么被折叠?



