Python机器学习笔记(十五、聚类算法的对比和评估)

用真实世界的数据集对k均值、凝聚聚类和DBSCAN算法进行比较。

1. 用真实值评估聚类

评估聚类算法对真实世界数据集的聚类结果,可以用调整rand指数ARI和归一化互信息NMI。

调整rand指数 (adjusted rand index,ARI)和归一化互信息(normalized mutual information,NMI),二者都给出了定量的度量,最佳值为1,0表示不相关的聚类。

示例,使用 ARI 来比较 k 均值、凝聚聚类和 DBSCAN 算法。

import numpy as np
import matplotlib.pyplot as plt
import mglearn
from sklearn.cluster import KMeans
from sklearn.datasets import make_moons
from sklearn.cluster import AgglomerativeClustering
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
from sklearn.metrics.cluster import adjusted_rand_score

X, y = make_moons(n_samples=200, noise=0.05, random_state=0)
# 将数据缩放成平均值为0、方差为1
scaler = StandardScaler()
scaler.fit(X)
X_scaled = scaler.transform(X)
fig, ax
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FreedomLeo1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值