Leetcode53 Maximum Subarray

本文深入探讨了求解数组中具有最大和的连续子序列的经典算法问题,提供了四种解法,重点介绍了O(N)时间复杂度的高效解决方案。

描述:求数组中的连续子序列和
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Follow up:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
该题属于特别经典的一道题目了,可以有4中解法,不过最好的还是DC O(N)和DP O(NlogN),自己尝试写的DP:

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        ThisSum = 0
        MaxSum = nums[0]
        #print(MaxSum)
        for i in range(len(nums)):
            
            ThisSum += nums[i]
            while ThisSum > MaxSum:
                MaxSum = ThisSum
            if ThisSum < 0:
                ThisSum = 0#负数不用再次参与运算,舍弃
         
        return MaxSum
#时间复杂度已经是O(N)了,比分而治之的NlogN要快**加粗样式**
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值