pytorch_lightning笔记

Debug

1. 快速运行一次所有的代码 (fast_dev_run)

训练了好长时间但是在训练or 验证的时候崩溃了 使用 fast_dev_run运行5个batch 的 training validation test and predication 查看是否存在错误:

train = Trainer(fast_dev_run=True) # True 时为5 
train = Trainer(fast_dev_run=7) # 可以调节为任意int值

2.缩短epoch的长度 (limit_xxx_batch)

有时仅使用training or validation or … 是helpful的 例如在Imagenet等较大的数据集上,比等待complete epoch faster

train = Trainer(limit_train_batch=0.1, limit_val_batch=0.01) # 10% and 1%
train = Trainer(limit_train_batch=10, limit_val_batch=5) # 10 batches and 5 batches

3. 打印输入输出层尺寸(example_input_array)

class LitModel(LightningModule):
    def __init__(self, *args, **kwargs):
        self.example_input_array = torch.Tensor(32, 1, 28, 28)

summary table 将会输出包括 input and output 的 dimensions

  | Name  | Type        | Params | Mode  | In sizes  | Out sizes
----------------------------------------------------------------------
0 | net   | Sequential  | 132 K  | train 
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

抽象带篮子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值