[剑指offer]求二叉树的深度

本文介绍了一种求解二叉树深度的方法,包括非递归的层次遍历实现及递归实现方式,帮助理解二叉树的基本操作。

题目

求二叉树的深度

描述

输入一棵二叉树,求该树的深度。从根结点到叶结点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度。

思路

  1. 通过层次遍历,获取层数即可
  2. 递归思路

代码

  1. 通过层次遍历,获取层数即可
public class Solution {
    public int TreeDepth(TreeNode pRoot)
    {
        if(pRoot == null){
            return 0;
        }
        Queue<TreeNode> queue = new LinkedList<TreeNode>();
        queue.add(pRoot);
        int depth = 0, count = 0, nextCount = 1;
        while(queue.size()!=0){
            TreeNode top = queue.poll();
            count++;
            if(top.left != null){
                queue.add(top.left);
            }
            if(top.right != null){
                queue.add(top.right);
            }
            if(count == nextCount){
                nextCount = queue.size();
                count = 0;
                depth++;
            }
        }
        return depth;
    }
}
  1. 递归思想
public class Solution {
    public int TreeDepth(TreeNode pRoot)
    {
        if(pRoot == null){
            return 0;
        }
        int left = TreeDepth(pRoot.left);
        int right = TreeDepth(pRoot.right);
        return Math.max(left, right) + 1;
    }
}

代码参考
https://www.nowcoder.com/questionTerminal/435fb86331474282a3499955f0a41e8b

基于STM32 F4的永磁同步电机无位置传感器控制策略研究内容概要:本文围绕基于STM32 F4的永磁同步电机(PMSM)无位置传感器控制策略展开研究,重点探讨在不依赖物理位置传感器的情况下,如何通过算法实现对电机转子位置和速度的精确估计与控制。文中结合嵌入式开发平台STM32 F4,采用如滑模观测器、扩展卡尔曼滤波或高频注入法等先进观测技术,实现对电机反电动势或磁链的估算,进而完成无传感器矢量控制(FOC)。同时,研究涵盖系统建模、控制算法设计、仿真验证(可能使用Simulink)以及在STM32硬件平台上的代码实现与调试,旨在提高电机控制系统的可靠性、降低成本并增强环境适应性。; 适合人群:具备一定电力电子、自动控制理论基础和嵌入式开发经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动开发的工程师。; 使用场景及目标:①掌握永磁同步电机无位置传感器控制的核心原理与实现方法;②学习如何在STM32平台上进行电机控制算法的移植与优化;③为开发高性能、低成本的电机驱动系统提供技术参考与实践指导。; 阅读建议:建议读者结合文中提到的控制理论、仿真模型与实际代码实现进行系统学习,有条件者应在实验平台上进行验证,重点关注观测器设计、参数整定及系统稳定性分析等关键环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值