题目
整数中1出现的次数(从1到n整数中1出现的次数)
描述
求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1、10、11、12、13因此共出现6次,但是对于后面问题他就没辙了。ACMer希望你们帮帮他,并把问题更加普遍化,可以很快的求出任意非负整数区间中1出现的次数。
思路
来源LeetCode
Go through the digit positions by using position multiplier m with values 1, 10, 100, 1000, etc.
For each position, split the decimal representation into two parts, for example split n=3141592 into a=31415 and b=92 when we’re at m=100 for analyzing the hundreds-digit. And then we know that the hundreds-digit of n is 1 for prefixes “” to “3141”, i.e., 3142 times. Each of those times is a streak, though. Because it’s the hundreds-digit, each streak is 100 long. So (a / 10 + 1) * 100 times, the hundreds-digit is 1.
Consider the thousands-digit, i.e., when m=1000. Then a=3141 and b=592. The thousands-digit is 1 for prefixes “” to “314”, so 315 times. And each time is a streak of 1000 numbers. However, since the thousands-digit is a 1, the very last streak isn’t 1000 numbers but only 593 numbers, for the suffixes “000” to “592”. So (a / 10 * 1000) + (b + 1) times, the thousands-digit is 1.
The case distincton between the current digit/position being 0, 1 and >=2 can easily be done in one expression. With (a + 8) / 10 you get the number of full streaks, and a % 10 == 1 tells you whether to add a partial streak.
代码
public static void main(String[] args) {
// System.out.println( T31.solution(13) );
//优化算法
System.out.println( T31.solution2(13) );
}
//暴力法
public static int solution(int n){
int t = 0;
for(int i=1;i<=n;i++){
int temp = i;
while(temp>0){
if(temp%10==1)
t++;
temp = temp/10;
}
}
return t;
}
public static int solution2(int n){
int ones = 0;
for (long m = 1; m <= n; m *= 10)
ones += (n/m + 8) / 10 * m + (n/m % 10 == 1 ? n%m + 1 : 0);
return ones;
}
思路还没懂…..

1771

被折叠的 条评论
为什么被折叠?



