“不要卷模型,要卷应用”之高考志愿填报智能体

摘要:李总的发言深刻洞察了当前人工智能领域的发展趋势与核心价值所在,具有高度的前瞻性和实践性。“大家不要卷模型,要卷应用”这一观点强调了在当前人工智能领域,应该更加注重技术的实际应用而非单纯的技术竞赛或模型优化。个性化应用将是AI时代的重要趋势之一,通过技术创新和个性化定制实现技术的深度应用和用户需求的精准满足。本文将以高考志愿填报智能体为例来设计一套方案,阐释技术的真正价值在于其能否被有效地应用于实际场景并解决具体问题。因此,我们应该更加注重技术的实际应用和效果评估而非单纯的技术竞赛或模型优化。只有这样才能推动人工智能技术的持续进步和广泛应用为社会发展做出更大的贡献。

关键字: 大模型  智能体  个性化应用

引言

李总的发言深刻洞察了当前人工智能领域的发展趋势与核心价值所在,具有高度的前瞻性和实践性。他的观点可以从以下几个方面进行理解:

  1. 从技术到应用的转变:李彦宏强调AI技术从辨别式向生成式的转变,这是一个重要的技术飞跃。生成式AI如ChatGPT等,展现了强大的内容生成能力,但这仅仅是技术发展的一个方面。更重要的是,这些技术如何被有效地应用到实际生活中,解决各行各业的具体问题,提升社会整体效率和人们的生活质量。这一转变要求我们从技术导向转向应用导向,关注技术的落地实施和实际效果。

  2. 避免“超级应用陷阱”:他指出过分追求用户日活跃量(DAU)而忽视应用的实际效果和产业价值的倾向,这是一个非常及时的提醒。在移动互联网时代,用户活跃度是评估应用成功与否的重要指标之一,但在AI时代,这一规律可能不再完全适用。一个应用的价值不应仅仅体现在用户数量上,更在于它能否为产业带来实质性的增益,促进产业升级和转型。

  3. 大模型技术的潜力与挑战:大模型技术作为AI领域的前沿技术,具有强大的学习、推理和生成能力,为AI应用提供了广阔的想象空间。然而,大模型也面临着训练成本高、能耗大、数据安全与隐私保护等挑战。因此,在推动大模型技术发展的同时,需要注重

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值