ENG 335 Computational Intelligence 2024 ASSIGNMENT 3

Java Python ENG 335 Computational Intelligence

2024

ASSIGNMENT 3

Genetic Algorithms

This is a compulsory assessment item. It counts 15% towards the final assessment and contributes to learning outcome ILO7.  ILO7 is assessed in this assignment and a mark of 50% is required to achieve this ILO.

Goals:

Develop a genetic algorithm for optimising the location of an emergency response unit in order to minimise the response time to a medical emergency in a city.

Submission Requirements:

This assignment is for a group of two students. Each group submits a single report (should include the User’s Guide) as well as software developed.

Plagiarism:

Each assignment must be entirely your own work.   Plagiarism  is  not  tolerated  (you will automatically fail the course).

Problem description:

Part 1

The city is mapped into a 7 km × 7 km grid, shown in Figure 1.  A number in each sector of the grid represents an average number of emergencies per year in a given sector.

Figure 1.  A grid-map of a 7 km × 7 km city.

A fitness function can be defined as a reciprocal of the sum of distances weighted by emergency rates:

where λn is the emergency rate in sector n;  (xn, yn ) are the coordinates of the centre of sector n; and  (xeru, yeru ) are the  location coordinates of the  emergency r ENG 335 Computational Intelligence 2024 ASSIGNMENT 3 esponse unit.  It  can be assumed that the emergency response unit can be located only in the centre of a sector.

Part 2

Develop a genetic algorithm for the problem described in Part 1 assuming that there is a river that divides the city into two parts, West and East, atx = 5 km.  West and East are connected by abridge located atx = 5 km andy = 5.5 km, as shown in Figure 2.

Figure 2.  A grid-map of a 7 km × 7 km city divided by a river.

Find the optimal location of the emergency response unit and compare it with the one obtained in Part 1.

Guidelines:

This assignment should take about 8 hours of work.  Remembering that a report is required, you should aim to allocate your efforts in roughly the following proportions:

1.         Familiarisation with the travelling salesman problem            10%.

2.         Implementation of the genetic algorithm                                50%.

3.         Testing the genetic algorithm                                                  10%.

4.         Developing a user-friendly interface (GUI)

with simulation of the algorithm                                            20%.

5.         Assignment Report                                                                  10%.

Assignment report should include the following:

1.         Introduction.

2.         Short description of the domain problem.

4.         Description of the genetic algorithm developed (examples are required!).

5.         User’s Guide.

6.         Conclusions         

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值