在之前的两篇文章中,我们分别讲了推荐系统中的基于内容的过滤和协同过滤技术,今天我们一起看看看混合过滤。
推荐系统为了避免单一推荐技术带来的限制和问题,同时也为了能够获得更好的性能,会结合不同的推荐技术。
混合过滤依据的想法是,一种算法可以弥补另一种算法的缺点,多个算法的组合将比单个算法能更准确、有效地提供推荐。
使用多种推荐技术能够弥补模型中某种技术存在的缺陷。组合方法可以是以下任何一种:分别实现算法后组合推荐结果,在协同过滤中加入基于内容的过滤,在基于内容的过滤中加入协同过滤,或者,把基于内容的过滤和协同过滤整合到一个推荐系统中。
加权式
指将多种推荐技术的计算结果加权混合产生推荐。加权混合的好处是在推荐过程中直接利用所有推荐技术的优势,整个系统性能都直接与推荐过程相关。不过这种技术有一个假设的前提是,对于整个空间中所有可能的项,使用不同技术的相关参数值都基本相同。
切换式
指根据问题背景和实际情况采用不同的推荐技术。比如,使用基于内容推荐和协同过滤混合的方式,系统首先使用基于内容的推荐技术,如果它不能产生高可信度的推荐,然后再尝试使用协同过滤技术。因为需要各种情况比较转换标准,所以这种方法会增加算法的复杂度和参数化,当然这样做的好处是对各种推荐技术的优点和弱点都比较敏感。
级联式
级联式技术在迭代细化过程来构建不同项目之间的偏好顺序。它是一个分阶段的过程:前一种方法的推荐通过另一种方法得到了改进。第一推荐技术输出粗略的推荐列表,该推荐列表又由下一推荐技术改进。由于迭代的粗略到精细的特性,级联式技术非常有效并且能容忍噪声。
合并式
同时采用多种推荐技术给出多种推荐结果,为用户提供参考。每个项目都有来自不同推荐技术的推荐。在合并式中,个体项目的表现并不总是影响局部的整体表现。