如何解决推荐系统中的冷启动问题?

当新用户或新项目进入内容平台时,就会出现冷启动(Cold Start)问题。

以协同过滤这样的经典推荐系统为例,假设每个用户或项目都有评级,这样我们就可以推断出类似用户/项目的评级,即使这些评级没办法调用。但是,对于新进入的用户/项目,实现这一点很困难,因为我们没有相关的浏览、点击或下载等数据,也就没办法使用矩阵分解技术来“填补空白”。

不过,研究人员已经提出了各种方法来解决冷启动问题。在这篇文章中,我们会简单介绍一些解决推荐系统中冷启动问题的方法,至于这些方法在实践工作中是否奏效,尚无定论。

精华版

•基于代表性:使用有代表性的项目和用户子集;

•基于内容:使用诸如文本、社交网络等的辅助信息;

•老虎机:考虑新项目中的EE问题(Exploration&Exploitation);

•深度学习:使用黑盒子。

详细版

基于代表性

如果没有足够的用户和项目信息,我们可以更多地依赖那些能够“代表”项目和用户的用户。这就是基于代表性的方法背后的哲学。

代表性用户的兴趣偏好线性组合能与其他用户的无限接近。例如,基于代表性的矩阵因子分解(RBMF,Representative Based Matrix Factorization),其实是矩阵因子分解方法的扩展,其附加约束条件是m个项应该由k个项的线性组合表示,如下面的目标函数所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值