【费马小定理】ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies
https://nanti.jisuanke.com/t/31716
1. 题意
求 2 ( n − 1 ) 2^{(n-1)} 2(n−1)的值, 1 ≤ N ≤ 1 0 100000 1≤N≤10 ^{100000} 1≤N≤10100000
2. 思路
费马小定理:
若p是质数,则对于任意正整数a,有
a
p
同
余
a
(
m
o
d
p
)
a^p 同余a(mod \ p)
ap同余a(mod p)
所以
a
p
−
1
同
余
1
(
m
o
d
p
)
a^{p-1} 同余 1(mod \ p)
ap−1同余1(mod p)
有
2
1000000007
−
1
=
1
(
m
o
d
1000000007
)
2^{1000000007-1}=1(mod \ 1000000007)
21000000007−1=1(mod 1000000007)
2
n
m
o
d
1000000006
=
2
n
m
o
d
1000000007
2^{n\ mod\ 1000000006 }= 2^{n}mod \ 1000000007
2n mod 1000000006=2nmod 1000000007
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn = 3500;
char s[100005];
const int MOD = 1e9+7;
const int MODD = 1e9+6;
ll mod_pow(ll a,ll b)
{
ll res = 1;
while(b)
{
if(b&1)res = res*a%MOD;
a = a*a%MOD;
b>>=1;
}
return res;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%s",s);
int len = strlen(s);
ll ans = 0;
for(int i=0;i<len;i++)
{
ans = ans*10+(s[i]-'0');
ans%=MODD;
}
ans = (ans+MODD-1)%MODD;
printf("%lld\n",mod_pow(2,ans));
}
}