代码随想录算法训练营第十七天 | 回溯、深度与高度

文章详细解析了力扣平台上三个关于二叉树的题目:平衡二叉树的深度计算,二叉树所有路径的前序遍历,以及左叶子节点之和的后序递归。通过递归和回溯的概念深入探讨了解决这些问题的方法和技巧。

目录

力扣题目

力扣题目记录

110.平衡二叉树

257. 二叉树的所有路径

递归

404.左叶子之和

总结


力扣题目

用时:1.5h

1、110.平衡二叉树

2、257. 二叉树的所有路径

3、404.左叶子之和


力扣题目记录

110.平衡二叉树

咋眼一看这道题目和104.二叉树的最大深度 (opens new window)很像,其实有很大区别。

这里强调一波概念:

  • 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。
  • 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。

但leetcode中强调的深度和高度很明显是按照节点来计算的,如图:

110.平衡二叉树2

因为求深度可以从上到下去查 所以需要前序遍历(中左右),而高度只能从下到上去查,所以只能后序遍历(左右中)

为什么104.二叉树的最大深度 (opens new window)中求的是二叉树的最大深度,也用的是后序遍历。

那是因为代码的逻辑其实是求的根节点的高度,而根节点的高度就是这棵树的最大深度,所以才可以使用后序遍历。

104.二叉树的最大深度 (opens new window)中,如果真正求取二叉树的最大深度,代码应该写成如下:(前序遍历)

class Solution {
public:
    int result;
    void getDepth(TreeNode* node, int depth) {
        result = depth > result ? depth : result; // 中

        if (node->left == NULL && node->right == NULL) return ;

        if (node->left) { // 左
            depth++;    // 深度+1
            getDepth(node->left, depth);
            depth--;    // 回溯,深度-1
        }
        if (node->right) { // 右
            depth++;    // 深度+1
            getDepth(node->right, depth);
            depth--;    // 回溯,深度-1
        }
        return ;
    }
    int maxDepth(TreeNode* root) {
        result = 0;
        if (root == NULL) return result;
        getDepth(root, 1);
        return result;
    }
};

可以看出使用了前序(中左右)的遍历顺序,这才是真正求深度的逻辑!

注意以上代码是为了把细节体现出来,简化一下代码如下:

class Solution {
public:
    int result;
    void getDepth(TreeNode* node, int depth) {
        result = depth > result ? depth : result; // 中
        if (node->left == NULL && node->right == NULL) return ;
        if (node->left) { // 左
            getDepth(node->left, depth + 1);
        }
        if (node->right) { // 右
            getDepth(node->right, depth + 1);
        }
        return ;
    }
    int maxDepth(TreeNode* root) {
        result = 0;
        if (root == 0) return result;
        getDepth(root, 1);
        return result;
    }
};

递归三步曲分析:

  • 明确递归函数的参数和返回值

参数:当前传入节点。 返回值:以当前传入节点为根节点的树的高度。

那么如何标记左右子树是否差值大于1呢?

如果当前传入节点为根节点的二叉树已经不是二叉平衡树了,还返回高度的话就没有意义了。

所以如果已经不是二叉平衡树了,可以返回-1 来标记已经不符合平衡树的规则了。

代码如下:

// -1 表示已经不是平衡二叉树了,否则返回值是以该节点为根节点树的高度
int getHeight(TreeNode* node)
  • 明确终止条件

递归的过程中依然是遇到空节点了为终止,返回0,表示当前节点为根节点的树高度为0

代码如下:

if (node == NULL) {
    return 0;
}
  • 明确单层递归的逻辑

如何判断以当前传入节点为根节点的二叉树是否是平衡二叉树呢?当然是其左子树高度和其右子树高度的差值。

分别求出其左右子树的高度,然后如果差值小于等于1,则返回当前二叉树的高度,否则返回-1,表示已经不是二叉平衡树了。

代码如下:

int leftHeight = getHeight(node->left); // 左
if (leftHeight == -1) return -1;
int rightHeight = getHeight(node->right); // 右
if (rightHeight == -1) return -1;

int result;
if (abs(leftHeight - rightHeight) > 1) {  // 中
    result = -1;
} else {
    result = 1 + max(leftHeight, rightHeight); // 以当前节点为根节点的树的最大高度
}

return result;

代码精简之后如下:

int leftHeight = getHeight(node->left);
if (leftHeight == -1) return -1;
int rightHeight = getHeight(node->right);
if (rightHeight == -1) return -1;
return abs(leftHeight - rightHeight) > 1 ? -1 : 1 + max(leftHeight, rightHeight);

此时递归的函数就已经写出来了,这个递归的函数传入节点指针,返回以该节点为根节点的二叉树的高度,如果不是二叉平衡树,则返回-1。

最后本题整体递归代码如下:

class Solution {
public:
    // 返回以该节点为根节点的二叉树的高度,如果不是平衡二叉树了则返回-1
    int getHeight(TreeNode* node) {
        if (node == NULL) {
            return 0;
        }
        int leftHeight = getHeight(node->left);
        if (leftHeight == -1) return -1;
        int rightHeight = getHeight(node->right);
        if (rightHeight == -1) return -1;
        return abs(leftHeight - rightHeight) > 1 ? -1 : 1 + max(leftHeight, rightHeight);
    }
    bool isBalanced(TreeNode* root) {
        return getHeight(root) == -1 ? false : true;
    }
};

257. 二叉树的所有路径

这道题目要求从根节点到叶子的路径,所以需要前序遍历,这样才方便让父节点指向孩子节点,找到对应的路径。

在这道题目中将第一次涉及到回溯,因为我们要把路径记录下来,需要回溯来回退一个路径再进入另一个路径。

前序遍历以及回溯的过程如图:

257.二叉树的所有路径

我们先使用递归的方式,来做前序遍历。要知道递归和回溯就是一家的,本题也需要回溯。

递归

  • 递归函数参数以及返回值

要传入根节点,记录每一条路径的path,和存放结果集的result,这里递归不需要返回值,代码如下:

void traversal(TreeNode* cur, vector<int>& path, vector<string>& result)
  • 确定递归终止条件

在写递归的时候都习惯了这么写:

if (cur == NULL) {
    终止处理逻辑
}

但是本题的终止条件这样写会很麻烦,因为本题要找到叶子节点,就开始结束的处理逻辑了(把路径放进result里)。

那么什么时候算是找到了叶子节点? 是当 cur不为空,其左右孩子都为空的时候,就找到叶子节点。

所以本题的终止条件是:

if (cur->left == NULL && cur->right == NULL) {
    终止处理逻辑
}

为什么没有判断cur是否为空呢,因为下面的逻辑可以控空节点不入循环

再来看一下终止处理的逻辑。

这里使用vector 结构path来记录路径,所以要把vector 结构的path转为string格式,再把这个string 放进 result里。

那么为什么使用了vector 结构来记录路径呢? 因为在下面处理单层递归逻辑的时候,要做回溯,使用vector方便来做回溯。

可能有的同学问了,我看有些人的代码也没有回溯啊。

其实是有回溯的,只不过隐藏在函数调用时的参数赋值里,下文我还会提到。

这里我们先使用vector结构的path容器来记录路径,那么终止处理逻辑如下:

if (cur->left == NULL && cur->right == NULL) { // 遇到叶子节点
    string sPath;
    for (int i = 0; i < path.size() - 1; i++) { // 将path里记录的路径转为string格式
        sPath += to_string(path[i]);
        sPath += "->";
    }
    sPath += to_string(path[path.size() - 1]); // 记录最后一个节点(叶子节点)
    result.push_back(sPath); // 收集一个路径
    return;
}
  • 确定单层递归逻辑

因为是前序遍历,需要先处理中间节点,中间节点就是我们要记录路径上的节点,先放进path中。

path.push_back(cur->val);

然后是递归和回溯的过程,上面说过没有判断cur是否为空,那么在这里递归的时候,如果为空就不进行下一层递归了。

所以递归前要加上判断语句,下面要递归的节点是否为空,如下

if (cur->left) {
    traversal(cur->left, path, result);
}
if (cur->right) {
    traversal(cur->right, path, result);
}

此时还没完,递归完,要做回溯啊,因为path 不能一直加入节点,它还要删节点,然后才能加入新的节点。

那么回溯要怎么回溯呢,一些同学会这么写,如下:

if (cur->left) {
    traversal(cur->left, path, result);
}
if (cur->right) {
    traversal(cur->right, path, result);
}
path.pop_back();

这个回溯就有很大的问题,我们知道,回溯和递归是一一对应的,有一个递归,就要有一个回溯,这么写的话相当于把递归和回溯拆开了, 一个在花括号里,一个在花括号外。

所以回溯要和递归永远在一起,世界上最遥远的距离是你在花括号里,而我在花括号外!

那么代码应该这么写:

if (cur->left) {
    traversal(cur->left, path, result);
    path.pop_back(); // 回溯
}
if (cur->right) {
    traversal(cur->right, path, result);
    path.pop_back(); // 回溯
}

那么本题整体代码如下:

// 版本一
class Solution {
private:

    void traversal(TreeNode* cur, vector<int>& path, vector<string>& result) {
        path.push_back(cur->val); // 中,中为什么写在这里,因为最后一个节点也要加入到path中 
        // 这才到了叶子节点
        if (cur->left == NULL && cur->right == NULL) {
            string sPath;
            for (int i = 0; i < path.size() - 1; i++) {
                sPath += to_string(path[i]);
                sPath += "->";
            }
            sPath += to_string(path[path.size() - 1]);
            result.push_back(sPath);
            return;
        }
        if (cur->left) { // 左 
            traversal(cur->left, path, result);
            path.pop_back(); // 回溯
        }
        if (cur->right) { // 右
            traversal(cur->right, path, result);
            path.pop_back(); // 回溯
        }
    }

public:
    vector<string> binaryTreePaths(TreeNode* root) {
        vector<string> result;
        vector<int> path;
        if (root == NULL) return result;
        traversal(root, path, result);
        return result;
    }
};

如上的C++代码充分体现了回溯。

那么如上代码可以精简成如下代码:

class Solution {
private:

    void traversal(TreeNode* cur, string path, vector<string>& result) {
        path += to_string(cur->val); // 中
        if (cur->left == NULL && cur->right == NULL) {
            result.push_back(path);
            return;
        }
        if (cur->left) traversal(cur->left, path + "->", result); // 左
        if (cur->right) traversal(cur->right, path + "->", result); // 右
    }

public:
    vector<string> binaryTreePaths(TreeNode* root) {
        vector<string> result;
        string path;
        if (root == NULL) return result;
        traversal(root, path, result);
        return result;

    }
};

如上代码精简了不少,也隐藏了不少东西。

注意在函数定义的时候void traversal(TreeNode* cur, string path, vector<string>& result) ,定义的是string path,每次都是复制赋值,不用使用引用,否则就无法做到回溯的效果。(这里涉及到C++语法知识)

那么在如上代码中,貌似没有看到回溯的逻辑,其实不然,回溯就隐藏在traversal(cur->left, path + "->", result);中的 path + "->" 每次函数调用完,path依然是没有加上"->" 的,这就是回溯了。

为了把这份精简代码的回溯过程展现出来,大家可以试一试把:

if (cur->left) traversal(cur->left, path + "->", result); // 左  回溯就隐藏在这里

改成如下代码:

path += "->";
traversal(cur->left, path, result); // 左

即:

if (cur->left) {
    path += "->";
    traversal(cur->left, path, result); // 左
}
if (cur->right) {
    path += "->";
    traversal(cur->right, path, result); // 右
}

此时就没有回溯了,这个代码就是通过不了的了。

如果想把回溯加上,就要 在上面代码的基础上,加上回溯,就可以AC了。

if (cur->left) {
    path += "->";
    traversal(cur->left, path, result); // 左
    path.pop_back(); // 回溯 '>'
    path.pop_back(); // 回溯 '-'
}
if (cur->right) {
    path += "->";
    traversal(cur->right, path, result); // 右
    path.pop_back(); // 回溯 '>' 
    path.pop_back(); //  回溯 '-' 
}

整体代码如下:

//版本二
class Solution {
private:
    void traversal(TreeNode* cur, string path, vector<string>& result) {
        path += to_string(cur->val); // 中,中为什么写在这里,因为最后一个节点也要加入到path中
        if (cur->left == NULL && cur->right == NULL) {
            result.push_back(path);
            return;
        }
        if (cur->left) {
            path += "->";
            traversal(cur->left, path, result); // 左
            path.pop_back(); // 回溯 '>'
            path.pop_back(); // 回溯 '-'
        }
        if (cur->right) {
            path += "->";
            traversal(cur->right, path, result); // 右
            path.pop_back(); // 回溯'>'
            path.pop_back(); // 回溯 '-'
        }
    }

public:
    vector<string> binaryTreePaths(TreeNode* root) {
        vector<string> result;
        string path;
        if (root == NULL) return result;
        traversal(root, path, result);
        return result;

    }
};

大家应该可以感受出来,如果把 path + "->"作为函数参数就是可以的,因为并没有改变path的数值,执行完递归函数之后,path依然是之前的数值(相当于回溯了)

综合以上,第二种递归的代码虽然精简但把很多重要的点隐藏在了代码细节里,第一种递归写法虽然代码多一些,但是把每一个逻辑处理都完整的展现出来了。


404.左叶子之和

递归的遍历顺序为后序遍历(左右中),是因为要通过递归函数的返回值来累加求取左叶子数值之和。

递归三部曲:

  • 确定递归函数的参数和返回值

判断一个树的左叶子节点之和,那么一定要传入树的根节点,递归函数的返回值为数值之和,所以为int

使用题目中给出的函数就可以了。

  • 确定终止条件

如果遍历到空节点,那么左叶子值一定是0

if (root == NULL) return 0;

注意,只有当前遍历的节点是父节点,才能判断其子节点是不是左叶子。 所以如果当前遍历的节点是叶子节点,那其左叶子也必定是0,那么终止条件为:

if (root == NULL) return 0;
if (root->left == NULL && root->right== NULL) return 0; //其实这个也可以不写,如果不写不影响结果,但就会让递归多进行了一层。
  •  确定单层递归的逻辑

当遇到左叶子节点的时候,记录数值,然后通过递归求取左子树左叶子之和,和 右子树左叶子之和,相加便是整个树的左叶子之和。

代码如下:

int leftValue = sumOfLeftLeaves(root->left);    // 左
if (root->left && !root->left->left && !root->left->right) {
    leftValue = root->left->val;
}
int rightValue = sumOfLeftLeaves(root->right);  // 右

int sum = leftValue + rightValue;               // 中
return sum;

整体递归代码如下:

class Solution {
public:
    int sumOfLeftLeaves(TreeNode* root) {
        if (root == NULL) return 0;
        if (root->left == NULL && root->right== NULL) return 0;

        int leftValue = sumOfLeftLeaves(root->left);    // 左
        if (root->left && !root->left->left && !root->left->right) { // 左子树就是一个左叶子的情况
            leftValue = root->left->val;
        }
        int rightValue = sumOfLeftLeaves(root->right);  // 右

        int sum = leftValue + rightValue;               // 中
        return sum;
    }
};

以上代码精简之后如下:

class Solution {
public:
    int sumOfLeftLeaves(TreeNode* root) {
        if (root == NULL) return 0;
        int leftValue = 0;
        if (root->left != NULL && root->left->left == NULL && root->left->right == NULL) {
            leftValue = root->left->val;
        }
        return leftValue + sumOfLeftLeaves(root->left) + sumOfLeftLeaves(root->right);
    }
};

我自己又写了一个版本

class Solution {
public:
    int sum = 0;
    void func(TreeNode* node, string leftOrRight)
    {
        
        if (node->left == NULL && node->right == NULL)
        {
            if (leftOrRight == "left")
            {
                sum += node->val;
            }
            return;
        }
        if (node->left)
        {
            func(node->left, "left");
        }
        if (node->right)
        {
            func(node->right, "right");
        }
        return;
    }

    int sumOfLeftLeaves(TreeNode* root) {
        if (root == NULL) return 0;
        func(root, "right");
        return sum;
    }
};

总结

        1、学习了回溯

        2、对递归理解加深

        3、高度用后序,深度用前序

参考:代码随想录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值