Tarjan算法求解强连通分量(SCC)

本文深入讲解了Tarjan算法,一种高效地寻找有向图中所有强连通分量的方法。文章详细介绍了算法的基本原理,包括如何通过深度优先搜索确定强连通分量的根节点,并利用栈来收集和输出这些分量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

强连通分量

有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量(strongly connected components)。

Tarjan算法求解思路

首先,任何一个强连通分量,必定是对原图的深度优先搜索树的子树。Targan算法即是基于DFS的一种算法。

所以,只要能确定每个强连通分量的子树的根,然后根据这些根从树的最低层开始,一个一个的拿出强连通分量即可。那么剩下的问题就只剩下如何确定强连通分量的根如何从最低层开始拿出强连通分量了

1.根的确定

pre[]表示顶点i开始访问时间,low表示与顶点i邻接的顶点未删除顶点j的lowj和lowi的最小值(lowu初始化为pre[u])。
这样,在一次深搜的回溯过程中,如果发现low==pre[i]那么,当前顶点就是一个强连通分量的根。因为如果它不是强连通分量的根,那么它一定是属于另一个强连通分量,而且它的根是当前顶点的祖宗,那么存在包含当前顶点的到其祖宗的回路,可知low一定被更改为一个比pre[i]更小的值。

low值用数组维护也可,但其实不需要

2.拿出强连通分量

如果当前节点为一个强连通分量的根,那么它的强连通分量一定是以该根为根节点的(剩下节点)子树。在深度优先遍历的时候维护一个堆栈,每次访问一个新节点,就压入堆栈。
因为当前节点是这个强连通分量中最先被压入堆栈的,那么在当前节点以后压入堆栈的并且仍在堆栈中的节点都属于这个强连通分量。为什么呢?假设一个节点在当前节点压入堆栈以后压入并且还存在,同时它不属于该强连通分量,那么它一定属于另一个强连通分量,但当前节点是它的根的祖宗,那么这个强连通分量应该在此之前已经被拿出。


Tarjan算法模板

#include<bits/stdc++.h>
using namespace std;
#define M(a, b) memset(a, b, sizeof(a))
#define INF 0x3f3f3f3f
const int N = 1000 + 5;
int pre[N], sccno[N], dfs_clock, scc_cnt;//sccno可以起到bool vis[]作用
vector<int> G[N];
stack<int> S;

int dfs(int u) {
    int lowu = pre[u] = ++dfs_clock;
    S.push(u);
    for (int i = 0; i < G[u].size(); ++i) {
        int v = G[u][i];
        if (!pre[v]) {
            int lowv = dfs(v);
            lowu = min(lowu, lowv);
        }
        else if (!sccno[v]) { //加这个判定条件去掉已经包含在其他强连通分量中的反向边
            lowu = min(lowu, pre[v]);
        }
    }
    if (lowu == pre[u]) {
        ++scc_cnt;//计数器,不同情况下可以选择使用,也可改为其他操作,例如另开数组记录信息
        while (true) {
            int x = S.top(); S.pop();
            sccno[x] = scc_cnt;//归为一类
            //其他操作 比如直接覆盖点:
            //sccno[t]=u;
            //cout<<"t->u "<<t<<"->"<<u<<endl;
            if (x == u) break;
        }
    }
    return lowu;//非数组low版本,需要返回值
}

void find_scc(int n) {
    M(pre, 0); M(sccno, 0);
    dfs_clock = scc_cnt = 0;
    for (int i = 1; i <= n; ++i) 
        if (!pre[i]) dfs(i); 
}

int main() {
    int n, m;
    while (cin >> n >> m) {
        int u, v;
        for (int i = 0; i < m; ++i) {
            cin >> u >> v;
            G[u].push_back(v);
        }
        find_scc(n);        
    }
    //其它操作 比如缩点重建图:
    /*
    for(int i=1;i<=n;++i)
        for(int j=0;j<G[i].size();++j){
            int k=G[i][j];
            if(sccno[i]!=sccno[k]){
                //cout<<sccno[i]<<" "<<sccno[k]<<endl;
                G2[sccno[i]].push_back(sccno[k]);
            }
        }
    */
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值