poj 2081

#include <iostream>
#include <cstdio>
#include <iomanip>
#include <string>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <set>
#include <vector>
#include <map>
#include <algorithm>
#include <cmath>
#include <stack>

#define INF 0x3f3f3f3f
#define LINF 0x3f3f3f3f3f3f3f3f
#define ll long long
#define ull unsigned long long
#define uint unsigned int

using namespace std;

#include <iostream>
#include <cstdio>
#include <iomanip>
#include <string>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <set>
#include <vector>
#include <map>
#include <algorithm>
#include <cmath>
#include <stack>

#define INF 0x3f3f3f3f
#define LINF 0x3f3f3f3f3f3f3f3f
#define ll long long
#define ull unsigned long long
#define uint unsigned int

using namespace std;

int n,temp;
int v[5111111];
int a[511111];

int main() {
	a[0] = 0;
	memset(v, 0, sizeof(v));
	for (int i = 1; i <= 500000; i++) {
		a[i] = a[i - 1] - i;
		if (a[i] <= 0 || v[a[i]] != 0)
			a[i] = a[i - 1] + i;
		v[a[i]] = 1;
	}

	while (scanf("%d", &n), n != -1)
		printf("%d\n", a[n]);
	
	return 0;
}

资源下载链接为: https://pan.quark.cn/s/790f7ffa6527 在一维运动场景中,小车从初始位置 x=-100 出发,目标是到达 x=0 的位置,位置坐标 x 作为受控对象,通过增量式 PID 控制算法调节小车的运动状态。 系统采用的位置迭代公式为 x (k)=x (k-1)+v (k-1) dt,其中 dt 为仿真过程中的恒定时间间隔,因此速度 v 成为主要的调节量。通过调节速度参数,实现对小车位置的精确控制,最终生成位置 - 时间曲线的仿真结果。 在参数调节实验中,比例调节系数 Kp 的影响十分显著。从仿真曲线可以清晰观察到,当增大 Kp 值时,系统的响应速度明显加快,小车能够更快地收敛到目标位置,缩短了稳定时间。这表明比例调节在加快系统响应方面发挥着关键作用,适当增大比例系数可有效提升系统的动态性能。 积分调节系数 Ki 的调节则呈现出不同的特性。实验数据显示,当增大 Ki 值时,系统运动过程中的波动幅度明显增大,位置曲线出现更剧烈的震荡。但与此同时,小车位置的变化速率也有所提高,在动态调整过程中能够更快地接近目标值。这说明积分调节虽然会增加系统的波动性,但对加快位置变化过程具有积极作用。 通过一系列参数调试实验,清晰展现了比例系数和积分系数在增量式 PID 控制系统中的不同影响规律,为优化控制效果提供了直观的参考依据。合理匹配 Kp 和 Ki 参数,能够在保证系统稳定性的同时,兼顾响应速度和调节精度,实现小车位置的高效控制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值