USACO 3.1 Agri-Net 最短网络 (最小生成树)

本文介绍了一个关于最小生成树的实际应用案例,通过普林姆算法解决农民约翰如何以最低成本将互联网连接到所有农场的问题。文章详细解释了算法流程及其实现过程。

问题描述
农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场。当然,他需要你的帮助。约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场。为了用最小的消费,他想铺设最短的光纤去连接所有的农场。你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并所用光纤最短的方案。每两个农场间的距离不会超过100000
输入
第一行: 农场的个数,N(3<=N<=100)。
第二行..结尾: 后来的行包含了一个N*N的矩阵,表示每个农场之间的距离。理论上,他们是N行,每行由N个用空格分隔的数组成,实际上,他们限制在80个字符,因此,某些行会紧接着另一些行。当然,对角线将会是0,因为不会有线路从第i个农场到它本身。
输出
只有一个输出,其中包含连接到每个农场的光纤的最小长度。
样例输入
4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0
样例输出
28
算法讨论
本题是个最小生成树问题,我用了普林姆算法,核心内容就是将顶点分为两个集合,枚举集合1中的每个顶点,找到与集合2中顶点连接的最小值,将最小连边的顶点加入集合1,如此重复直到连同。
pascal代码

const
  maxn=100;
var
  a:array[1..max
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值