Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
InputThe program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
Output
For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input
abcfbc abfcabprogramming contest
abcd mnp
Sample Output
42
0
题目大意:
求两字符串的最长公共子序列问题(即LCS问题)。
//AC
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int dp[30][30];
char s1[100],s2[100];
int main()
{
while (scanf("%s %s",s1,s2)!=EOF)
{
memset(dp,0,sizeof(dp));
for (int i=0;i<strlen(s1);i++)
{
for (int j=0;j<strlen(s2);j++)
{
if (s1[i]==s2[j])
dp[i+1][j+1]=dp[i][j]+1;
else
dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
}
}
// for (int i=0;i<strlen(s1);i++)
// {
// for (int j=0;j<strlen(s2);j++)
// {
// printf("%d ",dp[i+1][j+1]);
// }
// printf("\n");
// }
printf("%d\n",dp[strlen(s1)][strlen(s2)]);
}
return 0;
}
测试数据:abcd becd
测试结果:3
图解: s1\s2 b e c da 0 0 0 0
b 1 1 1 1
c 1 1 2 2
d 1 1 1 3

本文介绍了一个经典的计算机科学问题——最长公共子序列(LCS)问题,并提供了一段C++实现代码,该算法通过动态规划方法高效地求解两个字符串的最长公共子序列长度。
471

被折叠的 条评论
为什么被折叠?



