Jetpack-MVVM-高频提问和解答,妈妈再也不用担心我找工作了!_android mvvm jetpack 界面卡死

总结

【Android 详细知识点思维脑图(技能树)】

我个人是做Android开发,已经有十来年了,目前在某创业公司任职CTO兼系统架构师。虽然 Android 没有前几年火热了,已经过去了会四大组件就能找到高薪职位的时代了。这只能说明 Android 中级以下的岗位饱和了,现在高级工程师还是比较缺少的,很多高级职位给的薪资真的特别高(钱多也不一定能找到合适的),所以努力让自己成为高级工程师才是最重要的。

这里附上上述的面试题相关的几十套字节跳动,京东,小米,腾讯、头条、阿里、美团等公司19年的面试题。把技术点整理成了视频和PDF(实际上比预期多花了不少精力),包含知识脉络 + 诸多细节。

由于篇幅有限,这里以图片的形式给大家展示一小部分。

网上学习 Android的资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。希望这份系统化的技术体系对大家有一个方向参考。

最后,赠与大家一句话,共勉!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

px = dp * density

假设UI给的设计图屏幕宽度基于360dp,那么设备宽的像素点已知,即px,dp也已知,360dp,所以density = px / dp,之后根据这个修改系统中跟density相关的知识点即可。

3. Android消息机制
# Android消息机制介绍?

Android消息机制中的四大概念:

  • ThreadLocal:当前线程存储的数据仅能从当前线程取出。
  • MessageQueue:具有时间优先级的消息队列。
  • Looper:轮询消息队列,看是否有新的消息到来。
  • Handler:具体处理逻辑的地方。

过程:

  1. 准备工作:创建Handler,如果是在子线程中创建,还需要调用Looper#prepare(),在Handler的构造函数中,会绑定其中的LooperMessageQueue
  2. 发送消息:创建消息,使用Handler发送。
  3. 进入MessageQueue:因为Handler中绑定着消息队列,所以Message很自然的被放进消息队列。
  4. Looper轮询消息队列:Looper是一个死循环,一直观察有没有新的消息到来,之后从Message取出绑定的Handler,最后调用Handler中的处理逻辑,这一切都发生在Looper循环的线程,这也是Handler能够在指定线程处理任务的原因。
# Looper在主线程中死循环为什么没有导致界面的卡死?
  1. 导致卡死的是在Ui线程中执行耗时操作导致界面出现掉帧,甚至ANRLooper.loop()这个操作本身不会导致这个情况。
  2. 有人可能会说,我在点击事件中设置死循环会导致界面卡死,同样都是死循环,不都一样的吗?Looper会在没有消息的时候阻塞当前线程,释放CPU资源,等到有消息到来的时候,再唤醒主线程。
  3. App进程中是需要死循环的,如果循环结束的话,App进程就结束了。
# IdleHandler介绍?

介绍: IdleHandler是在Hanlder空闲时处理空闲任务的一种机制。

执行场景:

  • MessageQueue没有消息,队列为空的时候。
  • MessageQueue属于延迟消息,当前没有消息执行的时候。

会不会发生死循环: 答案是否定的,MessageQueue使用计数的方法保证一次调用MessageQueue#next方法只会使用一次的IdleHandler集合。

4. View事件分发机制和View绘制原理

刚哥的《Android开发艺术探索》已经很全面了,建议阅读。

5. Bitmap
# Bitmap的内存计算方式?

在已知图片的长和宽的像素的情况下,影响内存大小的因素会有资源文件位置和像素点大小

像素点大小: 常见的像素点有:

  • ARGB_8888:4个字节
  • ARGB_4444、ARGB_565:2个字节

资源文件位置: 不同dpi对应存放的文件夹

比如一个一张图片的像素为180*180pxdpi(设备独立像素密度)为320,如果它仅仅存放在drawable-hdpi,则有:

横向像素点 = 180 * 320/240 + 0.5f = 240 px
纵向像素点 = 180 * 320/240 + 0.5f = 240 px

如果 如果它仅仅存放在drawable-xxhdpi,则有:

横向像素点 = 180 * 320/480 + 0.5f = 120 px
纵向像素点 = 180 * 320/480 + 0.5f = 120 px

所以,对于一张180*180px的图片,设备dpi为320,资源图片仅仅存在drawable-hdpi,像素点大小为ARGB_4444,最后生成的文件内存大小为:

横向像素点 = 180 * 320/240 + 0.5f = 240 px
纵向像素点 = 180 * 320/240 + 0.5f = 240 px
内存大小 = 240 * 240 * 2 = 115200byte 约等于 112.5kb

# Bitmap的高效加载?

Bitmap的高效加载在Glide中也用到了,思路:

  1. 获取需要的长和宽,一般获取控件的长和宽。
  2. 设置BitmapFactory.Options中的inJustDecodeBounds为true,可以帮助我们在不加载进内存的方式获得Bitmap的长和宽。
  3. 对需要的长和宽和Bitmap的长和宽进行对比,从而获得压缩比例,放入BitmapFactory.Options中的inSampleSize属性。
  4. 设置BitmapFactory.Options中的inJustDecodeBounds为false,将图片加载进内存,进而设置到控件中。

二、Android进阶

Android进阶中重点考察Android Framework、性能优化和第三方框架。

1. Binder
# Binder的介绍?与其他IPC方式的优缺点?

Binder是Android中特有的IPC方式,引用《Android开发艺术探索》中的话(略有改动):

从IPC角度来说,Binder是Android中的一种跨进程通信方式;Binder还可以理解为虚拟的物理设备,它的设备驱动是/dev/binder;从Android Framework来讲,Binder是Service Manager连接各种Manager和对应的ManagerService的桥梁。从面向对象和CS模型来讲,Client通过Binder和远程的Server进行通讯。

基于Binder,Android还实现了其他的IPC方式,比如AIDLMessengerContentProvider

与其他IPC比较:

  • 效率高:除了内存共享外,其他IPC都需要进行两次数据拷贝,而因为Binder使用内存映射的关系,仅需要一次数据拷贝。
  • 安全性好:接收方可以从数据包中获取发送发的进程Id和用户Id,方便验证发送方的身份,其他IPC想要实验只能够主动存入,但是这有可能在发送的过程中被修改。

最后看一下**《Android框架体系架构(高级UI+FrameWork源码)》**学习需要的所有知识点的思维导图。在刚刚那份学习笔记里包含了下面知识点所有内容!文章里已经展示了部分!如果你正愁这块不知道如何学习或者想提升学习这块知识的学习效率,那么这份学习笔记绝对是你的秘密武器!

总结

本文讲解了我对Android开发现状的一些看法,也许有些人会觉得我的观点不对,但我认为没有绝对的对与错,一切交给时间去证明吧!愿与各位坚守的同胞们互相学习,共同进步!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值