bzoj4196: [Noi2015]软件包管理器

本文介绍了一种使用树链剖分结合线段树的数据结构解决特定问题的方法。通过该方法,可以有效地处理涉及树形结构中子树更新及查询的操作。文章详细展示了算法实现过程,并附上了完整的C++代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

  http://www.lydsy.com/JudgeOnline/problem.php?id=4196

题解

  半节课就写好了。。。结果超时又调了一节课,其实是0的问题,我数组边界设成了零,而节点编号也是从0开始的。以后凡是从0开始编号的题再也不用0当边界了。。

  树链剖分+线段树,卸载就是把当前子树置零,安装就是把当前点到0节点全设成1。

代码

//树链剖分+线段树
#include <cstdio>
#include <algorithm>
#include <iostream>
#define maxn 100010
using namespace std;
struct segtree
{
	int l, r, sum, set;
	segtree *lch, *rch;
	segtree(){sum=0;set=-1;lch=rch=0;}
}*root;
int N, head[maxn], next[maxn], to[maxn], fa[maxn], tid[maxn], top[maxn], son[maxn],
	size[maxn], tot, tim, l[maxn], r[maxn], deep[maxn];
void adde(int a, int b){to[++tot]=b;next[tot]=head[a];head[a]=tot;}
void input()
{
	int i;
	scanf("%d",&N);
	fa[0]=-1;
	for(i=1;i<N;i++)
	{
		scanf("%d",fa+i);
		adde(fa[i],i);
	}
}
void pushdown(segtree *p)
{
	if(p->set!=-1)
	{
		p->sum=p->set*(p->r-p->l+1);
		if(p->lch)p->lch->set=p->rch->set=p->set;
		p->set=-1;
	}
}
void update(segtree *p)
{
	if(p->lch==0)return;
	pushdown(p->lch),pushdown(p->rch);
	p->sum=p->lch->sum+p->rch->sum;
}
void build(segtree *p, int l, int r)
{
	int mid=(l+r)>>1;
	p->l=l,p->r=r;
	if(l==r)return;
	build(p->lch=new segtree,l,mid);
	build(p->rch=new segtree,mid+1,r);
}
void segset(segtree *p, int l, int r, int w)
{
	pushdown(p);
	int mid=(p->l+p->r)>>1;
	if(l<=p->l and r>=p->r){p->set=w;return;}
	if(l<=mid)segset(p->lch,l,r,w);
	if(r>mid)segset(p->rch,l,r,w);
	update(p);
}
int segsum(segtree *p, int l, int r)
{
	pushdown(p);
	int mid=(l+r)>>1, ans=0;
	if(l<=p->l and r>=p->r){return p->sum;}
	if(l<=mid)ans+=segsum(p->lch,l,mid);
	if(r>mid)ans+=segsum(p->rch,mid+1,r);
	return ans;
}
void dfs1(int pos)
{
	int p;
	size[pos]=1;
	for(p=head[pos];p;p=next[p])
	{
		if(to[p]==fa[pos])continue;
		deep[to[p]]=deep[pos]+1;
		dfs1(to[p]);
		if(son[pos]==0 or size[to[p]]>size[son[pos]])son[pos]=to[p];
		size[pos]+=size[to[p]];
	}
}
void dfs2(int pos, int tp)
{
	int p;
	top[pos]=tp;
	tid[pos]=++tim;
	l[pos]=tim;
	if(son[pos])dfs2(son[pos],tp);
	for(p=head[pos];p;p=next[p])
	{
		if(to[p]==fa[pos] or to[p]==son[pos])continue;
		dfs2(to[p],to[p]);
	}
	r[pos]=tim;
}
void install(int x)
{
	while(x!=-1)segset(root,tid[top[x]],tid[x],1),x=fa[top[x]];
}
int main()
{
	int i, x, q, last=0;
	char type[100];
	input();
	dfs1(0);
	dfs2(0,0);
	build(root=new segtree,1,tim);
	scanf("%d",&q);
	for(i=1;i<=q;i++)
	{
		scanf("%s%d",type,&x);
		if(*type=='i')install(x);
		else segset(root,l[x],r[x],0);
		x=segsum(root,1,tim);
		printf("%d\n",abs(x-last));
		last=x;
	}
	return 0;
}


内容概要:本文详细探讨了基于MATLAB/SIMULINK的多载波无线通信系统仿真及性能分析,重点研究了以OFDM为代表的多载波技术。文章首先介绍了OFDM的基本原理和系统组成,随后通过仿真平台分析了不同调制方式的抗干扰性能、信道估计算法对系统性能的影响以及同步技术的实现与分析。文中提供了详细的MATLAB代码实现,涵盖OFDM系统的基本仿真、信道估计算法比较、同步算法实现和不同调制方式的性能比较。此外,还讨论了信道特征、OFDM关键技术、信道估计、同步技术和系统级仿真架构,并提出了未来的改进方向,如深度学习增强、混合波形设计和硬件加速方案。; 适合人群:具备无线通信基础知识,尤其是对OFDM技术有一定了解的研究人员和技术人员;从事无线通信系统设计与开发的工程师;高校通信工程专业的高年级本科生和研究生。; 使用场景及目标:①理解OFDM系统的工作原理及其在多径信道环境下的性能表现;②掌握MATLAB/SIMULINK在无线通信系统仿真中的应用;③评估不同调制方式、信道估计算法和同步算法的优劣;④为实际OFDM系统的设计和优化提供理论依据和技术支持。; 其他说明:本文不仅提供了详细的理论分析,还附带了大量的MATLAB代码示例,便于读者动手实践。建议读者在学习过程中结合代码进行调试和实验,以加深对OFDM技术的理解。此外,文中还涉及了一些最新的研究方向和技术趋势,如AI增强和毫米波通信,为读者提供了更广阔的视野。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值