链接
题解
对于两个点:
如果这两个点的连线斜率是正的,中间如果有点的话,肯定可以通过逆时针旋转获得更大的斜率
斜率如果是负值,同理
所以我就可以知道,最大值肯定是某两个相邻点连线的斜率
这么说来,我只需要维护相邻两点纵坐标之差就可以了
代码
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 1000010
#define maxe 1000010
#define cl(x) memset(x,0,sizeof(x))
#define rep(i,a,b) for(i=a;i<=b;i++)
#define drep(i,a,b) for(i=a;i>=b;i--)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
ll c, f(1);
for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
for(;isdigit(c);c=getchar())x=x*10+c-0x30;
return f*x;
}
struct SegmentTree
{
ll mx[maxn<<2], L[maxn<<2], R[maxn<<2];
void pushup(ll o)
{
mx[o]=max(mx[o<<1],mx[o<<1|1]);
}
void build(ll o, ll l, ll r, ll* array=NULL)
{
ll mid(l+r>>1);
L[o]=l, R[o]=r;
mx[o]=-linf;
if(l==r)
{
return;
}
build(o<<1,l,mid,array);
build(o<<1|1,mid+1,r,array);
pushup(o);
}
void chg(ll o, ll pos, ll v)
{
ll mid(L[o]+R[o]>>1);
if(L[o]==R[o]){mx[o]=v;return;}
if(pos<=mid)chg(o<<1,pos,v);
else chg(o<<1|1,pos,v);
pushup(o);
}
}segtree;
ll a[maxn];
int main()
{
ll n;
while(~scanf("%lld",&n))
{
segtree.build(1,2,n);
ll i;
rep(i,1,n)
{
a[i]=read();
if(i>1)segtree.chg(1,i,a[i]-a[i-1]);
}
ll q=read();
rep(i,1,q)
{
ll x=read(), y=read();
a[x]=y;
if(x>1)segtree.chg(1,x,a[x]-a[x-1]);
if(x<n)segtree.chg(1,x+1,a[x+1]-a[x]);
printf("%lld.00\n",segtree.mx[1]);
}
}
return 0;
}