专题三1014

*题意 :n条折线分割平面的最大数目

*思路

对n取任意值时,分割平面数= 交点数 + 顶点数 + 1,我们假设f(n-1)已知,又f(n)每一条拆线与另一条拆线交点为4,则新加第N条拆线交点数增加4*(n-1)
顶点数比f(n-1)多一个,故f(n)=f(n-1)+4*(n-1)+1;

*源码

    #include<iostream>  
    using namespace std;  
    int main()  
    {  
        int n,data;  
        cin>>n;  
        while(n--)  
        {  
            cin>>data;  
            cout<<data*data*2-data+1<<endl;
        }  
        return 0;  
    } 



                                                        Problem N

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 27   Accepted Submission(s) : 20
Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。<br><img src=../data/images/C40-1008-1.jpg>
 

Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。<br><br>
 

Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。<br><br>
 

Sample Input
   
2 1 2
 

Sample Output
   
2 7
 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值