Cycling Roads

几何

When Vova was in Shenzhen, he rented a bike and spent most of the time cycling around the city. Vova was approaching one of the city parks when he noticed the park plan hanging opposite the central entrance. The plan had several marble statues marked on it. One of such statues stood right there, by the park entrance. Vova wanted to ride in the park on the bike and take photos of all statues. The park territory has multiple bidirectional cycling roads. Each cycling road starts and ends at a marble statue and can be represented as a segment on the plane. If two cycling roads share a common point, then Vova can turn on this point from one road to the other. If the statue stands right on the road, it doesn’t interfere with the traffic in any way and can be photoed from the road.
Can Vova get to all statues in the park riding his bike along cycling roads only?
Input
The first line contains integers n and m that are the number of statues and cycling roads in the park (1 ≤ m < n ≤ 200) . Then n lines follow, each of them contains the coordinates of one statue on the park plan. The coordinates are integers, their absolute values don’t exceed 30 000. Any two statues have distinct coordinates. Each of the following m lines contains two distinct integers from 1 to n that are the numbers of the statues that have a cycling road between them.
Output
Print “YES” if Vova can get from the park entrance to all the park statues, moving along cycling roads only, and “NO” otherwise.
Example
input output

4 2
0 0
1 0
1 1
0 1
1 3
4 2



YES

4 3
0 0
1 0
1 1
0 1
1 2
2 1
3 4



NO

3 2
0 0
1 0
1 1
1 3
3 2

题目大意:给出n个点,m条线段,问所有的点是否可以相互到达。
给出的点有两个变量,x,y。给出的线段,有两个变量,每一条线段代表第一个点和第二个点之间有一条线段。

可以使用并查集+线段, 首先,给出线段之后,把在线段上的点都合并,然后遍历看看这条线段是否与其他线段相交,如果相交,则合并其他点。如果最后只有一个祖先,则是YES,否则,NO。

#include <bits/stdc++.h>
using namespace std;
int pre[322];
int ans;
const double pi = acos(-1.0);
const double eps = 1e-8;
int Find(int a)
{
    if(a!=pre[a])
        return pre[a] = Find(pre[a]);
    return a;
}
void Merge(int a, int b)
{
    int aa = Find(a);
    int bb = Find(b);
    if(aa!=bb)
    {
        pre[aa] = bb;
        ans--;
    }
}
int cmp(double x)
{
    if(fabs(x)<eps)
        return 0;
    if(x>0)
        return 1;
    return -1;
}
struct point
{
    double x, y;
    int id;
    point(){}
    point(double a, double b)
    {
        x = a;
        y = b;
    }
    friend point operator + (const point &a, const point &b)
    {
        return point (a.x + b.x, a.y + b.y);
    }
    friend point operator - (const point &a, const point &b)
    {
        return point (a.x - b.x, a.y - b.y);
    }
}Point[345];
double dot(const point &a, const point &b)//点积
{
    return a.x*b.x+a.y*b.y;
}
double det(const point &a, const point &b)//叉积
{
    return a.x*b.y - a.y*b.x;
}
struct line
{
    point a, b;
    line(){};
    line(point x, point y):a(x), b(y){}
}Line[322];
line point_make_line(const point a, const point b)
{
    return line(a, b);
}
//bool PointOnSegment (point p, point s, point t)
//{
//    return cmp(det(p-s, t-s))==0&&cmp(dot(p-s, p-t))<=0;
//}
bool PointOnSegment (point p, line A)
{
    return cmp(det(A.a - p, A.b-p))==0&&cmp(dot(A.a-p, A.b-p))<=0;
}
//bool parallel(line a, line b)
//{
//    return !cmp(det(a.a-a.b, b.a-b.b));
//}
//bool line_make_point(line a, line b)
//{
//    if(parallel(a, b))
//        return false;
//    return true;
//}
bool line_make_point(line l1, line l2)
{
    if (PointOnSegment(l1.a, l2) || PointOnSegment(l1.b, l2) || PointOnSegment(l2.a, l1) || PointOnSegment(l2.b, l1))
    {
        return true;
    }
    double c1 = det(l1.a - l2.a, l1.a - l1.b);
    double c2 = det(l1.a - l2.b, l1.a - l1.b);
    double c3 = det(l2.a - l1.a, l2.a - l2.b);
    double c4 = det(l2.a - l1.b, l2.a - l2.b);
    return cmp(c1) * cmp(c2) < 0 && cmp(c3) * cmp(c4) < 0;
}
int main()
{
    int n, m;
    cin>>n>>m;
    ans = n;
    for(int i=1;i<=n;i++)
    {
        cin>>Point[i].x>>Point[i].y;
        Point[i].id = i;
    }
    for(int i=1;i<=n;i++)
    {
        pre[i] = i;
    }
    for(int i=1;i<=m;i++)
    {
        int a, b;
        cin>>a>>b;
        Line[i] = point_make_line(Point[a], Point[b]);
        for(int j=1;j<=n;j++)
        {
//            if(PointOnSegment(Point[j], Point[a], Point[b]))
//                {
//                    Merge(Point[j].id, Point[a].id);
//                    Merge(Point[j].id, Point[b].id);
//                }
                if(PointOnSegment(Point[j], Line[i]))
                {
                    Merge(Point[j].id, Line[i].a.id);
                    Merge(Point[j].id, Line[i].b.id);
                }
        }
        for(int j=1;j<i;j++)
        {
            if(line_make_point(Line[i], Line[j]))
            {
                Merge(Line[i].a.id, Line[j].a.id);
                Merge(Line[i].a.id, Line[j].b.id);
                Merge(Line[i].b.id, Line[j].a.id);
                Merge(Line[i].b.id, Line[j].b.id);
            }
        }
    }
    if(ans==1)
        cout<<"YES"<<endl;
    else
        cout<<"NO"<<endl;
    return 0;
}
一、基础信息 数据集名称:Bottle Fin实例分割数据集 图片数量: 训练集:4418张图片 验证集:1104张图片 总计:5522张图片 分类类别: - 类别0: 数字0 - 类别1: 数字1 - 类别2: 数字2 - 类别3: 数字3 - 类别4: 数字4 - 类别5: 数字5 - 类别6: Bottle Fin 标注格式:YOLO格式,包含多边形坐标,适用于实例分割任务。 数据格式:图片格式常见如JPEG或PNG,具体未指定。 二、适用场景 实例分割AI模型开发:数据集支持实例分割任务,帮助构建能够精确识别和分割图像中多个对象的AI模型,适用于对象检测和分割应用。 工业自动化与质量控制:可能应用于制造、物流或零售领域,用于自动化检测和分类物体,提升生产效率。 计算机视觉研究:支持实例分割算法的学术研究,促进目标检测和分割技术的创新。 教育与实践培训:可用于高校或培训机构的计算机视觉课程,作为实例分割任务的实践资源,帮助学生理解多类别分割。 三、数据集优势 多类别设计:包含7个不同类别,涵盖数字和Bottle Fin对象,增强模型对多样对象的识别和分割能力。 高质量标注:标注采用YOLO格式的多边形坐标,确保分割边界的精确性,提升模型训练效果。 数据规模适中:拥有超过5500张图片,提供充足的样本用于模型训练和验证,支持稳健的AI开发。 即插即用兼容性:标注格式直接兼容主流深度学习框架(如YOLO),便于快速集成到各种实例分割项目中。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值