[LeetCode 542] 01 Matrix

本文介绍了一种高效解决01矩阵问题的方法,通过广度优先搜索(BFS)从所有值为0的元素开始,计算矩阵中每个元素到最近0的距离。这种方法避免了深度优先搜索(DFS)可能带来的超时问题,确保了算法的运行效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a matrix consists of 0 and 1, find the distance of the nearest 0 for each cell.

The distance between two adjacent cells is 1.

Example 1:

Input:
[[0,0,0],
 [0,1,0],
 [0,0,0]]

Output:
[[0,0,0],
 [0,1,0],
 [0,0,0]]

Example 2:

Input:
[[0,0,0],
 [0,1,0],
 [1,1,1]]

Output:
[[0,0,0],
 [0,1,0],
 [1,2,1]]

Note:

  1. The number of elements of the given matrix will not exceed 10,000.
  2. There are at least one 0 in the given matrix.
  3. The cells are adjacent in only four directions: up, down, left and right.

分析

这道题用深搜的话会超时,尝试了加入最短路径的记录也会超时,所以深搜的办法不可取。那么就只能使用广搜,以0为起点,搜索附近的点,如果搜索的点的distance大于当前搜索的路径,则压入队列。

Code

class Solution {
public:
    vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
        
        int rows = matrix.size();
        if (rows == 0)
            return vector<vector<int>>();
        int cols = matrix[0].size();
        vector<vector<int>> res(rows+2, vector<int>(cols+2, INT_MAX));
        queue<pair<int, int>> q;
        for (int i = 0; i < rows; i ++)
        {
            for (int j = 0; j < cols; j ++)
            {
                if (matrix[i][j] == 0)
                {
                    res[i+1][j+1] = 0;
                    q.push(make_pair(i+1, j+1));
                }
            }
        }
        
        while (!q.empty())
        {
            int x = q.front().first;
            int y = q.front().second;
            if (x < 1 || x > rows || y < 1 || y > cols)
            {
                q.pop();
                continue;
            }

            q.pop();
            if (res[x-1][y] > res[x][y] + 1)
            {
                q.push(make_pair(x-1, y));
                res[x-1][y] = res[x][y]+1;
            }
            if (res[x+1][y] > res[x][y] + 1)
            {
                q.push(make_pair(x+1, y));
                res[x+1][y] = res[x][y]+1;
            }
            if (res[x][y-1] > res[x][y] + 1)
            {
                q.push(make_pair(x, y-1));
                res[x][y-1] = res[x][y]+1;
            }
            if (res[x][y+1] > res[x][y] + 1)
            {
                q.push(make_pair(x, y+1));
                res[x][y+1] = res[x][y]+1;
            }
        }
        
        res.pop_back();
        res.erase(res.begin());
        for (int i = 0; i < rows; i ++)
        {
            res[i].pop_back();
            res[i].erase(res[i].begin());
        }
        return res;
    }
};

运行效率

Runtime: 192 ms, faster than 83.61% of C++ online submissions for 01 Matrix.

Memory Usage: 25.1 MB, less than 39.33% of C++ online submissions for01 Matrix.

LeetCode 542题是要求实现一个算法,将一个给定的二维数组(0代表墙,1代表空地,2代表细菌)按以下规则进行更新: - 任何1都会被更新为2; - 每个1旁边的空地(与1在上下左右相邻),会按顺序变为1; - 根据更新规则,墙(0)不变。 这个问题可以用广度优先索(BFS)解决。我们可以从所有初始为2的细菌开始,将其周围的空地依次更新为1。我们从这些初始的细菌出发,将它们的相邻位置放入队列中,然后不断从队列中取出位置进行更新,直到队列为空。 以下是一个可能的C++解决方案: ```cpp #include <vector> using namespace std; class Solution { public: vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) { int m = matrix.size(), n = matrix[0].size(); vector<vector<int>> dirs = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; vector<vector<int>> ans(m, vector<int>(n, INT_MAX)); queue<pair<int, int>> q; // 初始化,将所有的细菌位置加入队列,并记录答案中的距离 for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (matrix[i][j] == 2) { q.push({i, j}); ans[i][j] = 0; } } } // 广度优先索 while (!q.empty()) { auto [x, y] = q.front(); q.pop(); for (auto& dir : dirs) { int nx = x + dir[0], ny = y + dir[1]; if (nx >= 0 && nx < m && ny >= 0 && ny < n && ans[nx][ny] > ans[x][y] + 1) { ans[nx][ny] = ans[x][y] + 1; q.push({nx, ny}); } } } return ans; } }; ``` 在这段代码中,首先创建了一个方向数组`dirs`来表示上下左右四个方向。接着,初始化一个同样大小的二维数组`ans`来存储每个位置到最近细菌的距离,并将所有的细菌位置和初始距离0加入队列中。然后执行广度优先索,对于队列中的每个位置,将其相邻的空地加入队列,并更新`ans`数组中相应位置的值为当前位置到最近细菌的最短距离。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值