[LeetCode 399] Evaluate Division

本文介绍了解决特定数学问题的方法,即通过给定的除法等式求解未知比值。提出了两种解决方案,一种是递归加回溯算法,另一种是Floyd算法。这两种方法都能有效地计算出未知的比值,但Floyd算法在某些情况下可能更优。

Equations are given in the format A / B = k, where A and B are variables represented as strings, and k is a real number (floating point number). Given some queries, return the answers. If the answer does not exist, return -1.0.

Example:
Given a / b = 2.0, b / c = 3.0. 
queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ? . 
return [6.0, 0.5, -1.0, 1.0, -1.0 ].

The input is: vector<pair<string, string>> equations, vector<double>& values, vector<pair<string, string>> queries , where equations.size() == values.size(), and the values are positive. This represents the equations. Return vector<double>.

According to the example above:

equations = [ ["a", "b"], ["b", "c"] ],
values = [2.0, 3.0],
queries = [ ["a", "c"], ["b", "a"], ["a", "e"], ["a", "a"], ["x", "x"] ]. 

The input is always valid. You may assume that evaluating the queries will result in no division by zero and there is no contradiction.

分析

这道题看起来很唬人,但是细细分析应该是一个典型的递归+回溯的题目。

我们先来分析一下例子,如果 a/b = 2, b/c = 3, 那怎么计算a/c呢?

首先我们需要将所有的关系式都记录下来,需要记录a/b = 2, b/a = 0.5, b/c=3, c/b = 0.33,为了记录这些关系我们需要使用map(string, vector<pair<string, value>>),key是被除数,value是除数和被除数/除数的结果。这样我们就把所有给定的关系都给记录下来了。

那么接下来如何找到a/c的结果?这个时候就需要体用递归+回溯了。我们用下表表示关系

 abc
a 2 
b0.5 3
c 0.33 

我们从a开始寻找,遍历所有与a有关系的string,找到b,让后遍历所有与b有关系的string,直到找到c,为了防止遍历的过程中出现环,a->b->a,我们使用一个set记录已经便利过的点,如果在此次寻找中已经找过了就直接跳过。

看到其他人的方法,发现还有一种更为简单和直观的解法: Floyd算法。如上表所示,我们已经列出了已知条件中关系,我们可以通过遍历中间点,算出任意两两之间的关系。


Code

递归+回溯

class Solution {
public:
    vector<double> calcEquation(vector<pair<string, string>> equations, vector<double>& values, vector<pair<string, string>> queries) {
        map<string, vector<pair<string, double>>> grid;
        vector<double> res;
        
        for (int i = 0; i < equations.size(); i ++)
        {
            string a = equations[i].first;
            string b = equations[i].second;
            double value = values[i];
            if (grid.find(a) == grid.end())
            {
                grid.insert(make_pair(a, vector<pair<string, double>>()));
            }
            if (grid.find(b) == grid.end())
            {
                grid.insert(make_pair(b, vector<pair<string, double>>()));
            }
            grid[a].push_back(make_pair(b, value));
            grid[b].push_back(make_pair(a, 1/value));
        }
        
        for (int i = 0; i < queries.size(); i ++)
        {
            string a = queries[i].first;
            string b = queries[i].second;
            set<string> touch;
            touch.insert(a);
            res.push_back(calc(grid, 1.0, a, b, touch));
        }
        return res;
    }
    
    double calc(map<string, vector<pair<string, double>>>& grid, double prefix,
                string a, string b, set<string> touch)
    {
        if (grid.find(a) == grid.end() || grid.find(b) == grid.end())
            return -1.0;
        if (a == b)
            return prefix;
        vector<pair<string, double>> g = grid[a];
        for (int i = 0; i < g.size(); i ++)
        {
            string tmpS = g[i].first;
            double tmpValue = g[i].second;
            if (touch.find(tmpS) != touch.end())
                continue;
            touch.insert(tmpS);
            double ret = calc(grid, prefix * tmpValue, tmpS, b, touch);
            if (ret != -1.0)
            {
                return ret;
            }
            touch.erase(tmpS);
        }
        return -1.0;
    }
};

Floyd算法

class Solution {
public:
    vector<double> calcEquation(vector<pair<string, string>> equations, vector<double>& values, vector<pair<string, string>> queries) {
        map<string, map<string, double>> grid;
        vector<double> res;
        
        for (int i = 0; i < equations.size(); i ++)
        {
            string a = equations[i].first;
            string b = equations[i].second;
            double value = values[i];
            grid[a][b] = value;
            grid[b][a] = 1/value;
        }
        
        map<string, map<string, double>>::iterator k,m,n;
        for (k = grid.begin(); k!= grid.end(); k++) // middle
            for (m = grid.begin(); m!=grid.end(); m++)
                for (n = grid.begin(); n !=grid.end(); n++)
                {
                    if (grid[m->first].count(n->first) == 0 &&
                        grid[m->first].count(k->first) == 1 &&
                        grid[k->first].count(n->first) == 1)
                    {
                        grid[m->first][n->first] = m->second.at(k->first) *
                            k->second.at(n->first);
                    }
                }
            
        
        for (int i = 0; i < queries.size(); i ++)
        {
            string a = queries[i].first;
            string b = queries[i].second;
            if (grid.find(a) == grid.end() || grid.find(b) == grid.end()
               || grid[a].count(b) == 0)
            {
                res.push_back(-1.0);
                continue;
            }
            res.push_back(grid[a][b]);
        }
        return res;
    }
};

运行效率

递归+回溯

Runtime: 4 ms, faster than 100.00% of C++ online submissions for Evaluate Division.

Memory Usage: 9.9 MB, less than 8.17% of C++ online submissions for Evaluate Division.

Floyd

Runtime: 8 ms, faster than 24.88% of C++ online submissions for Evaluate Division.

Memory Usage: 9.4 MB, less than 86.54% of C++ online submissions for Evaluate Division.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值