随机过程 草稿笔记

本文深入探讨了随机过程的基础概念,包括定义、分类及各种数学性质,如分布函数、均值函数、协方差函数等。此外,还详细介绍了正态分布、泊松过程、复合泊松过程以及马尔可夫链的特性,并提供了这些随机过程在不同场景下的应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Stochastic process

大部分来自wiki
虽然想着英文好理解一些, 但是自己写还是会有好多用错词 的啊(
就当latex练习好了

a mathematical object defined as a family of random variables.

Definitions

Stochastic process
  • a collection of random variables indexed by some set.
  • numerical values of some system randomly changing over time.
Random Function

a stochastic process can also be interpreted as a random element in a function space.

Random Field

If the random variables are indexed by the Cartesian plane or some higher-dimensional Euclidean space, then the collection of random variables is usually called a random field instead.

Discrete-time & Continuous-time Stochastic Processes

(When interpreted as time, ) The index set has a finite or countable number of elements or not.

State Space

where each random variable takes values from.

Discrete/Integer-valued SP
  • state space: integers or natural numbers
Real-valued SP
  • state space: real line
N-dimensional Vector Process
  • state space: n-d Euclidean space

Notation

probability space

(Ω,F,P) (\Omega,F,P) (Ω,F,P)

where Ω\OmegaΩ is a sample space, FFF is a σ\sigmaσ-algebra, PPP is a probability measure.

measurable space

(S,Σ) (S,\Sigma) (S,Σ)

while SSS is the state space.

stochastic process

{X(t):t∈T} \{X(t):t\in{T}\} {X(t):tT}

while X(t)X(t)X(t) refer to the random variable with the index ttt

TTT is called the index set or parameter set.

distribution function Ft1,t2,⋯ ,ti(x1,x2,⋯ ,xi)F_{t_1, t_2, \cdots, t_i}(x_1,x_2,\cdots,x_i)Ft1,t2,,ti(x1,x2,,xi)

Ft1,t2,⋯ ,tn(x1,x2,⋯ ,xn)=P{X(t1)≤x1,X(t2)≤x2,⋯ ,X(tn)≤xn} F_{t_1,t_2,\cdots,t_n}(x_1,x_2,\cdots,x_n) = P\{X(t_1)\leq x_1,X(t_2)\leq x_2,\cdots,X(t_n)\leq x_n\} Ft1,t2,,tn(x1,x2,,xn)=P{X(t1)x1,X(t2)x2,,X(tn)xn}

If the distribution is independent,
P{X(t1)≤x1,X(t2)≤x2}=P{X(t1)≤x1}P{X(t2)≤x2} P\{X(t_1)\leq x_1,X(t_2)\leq x_2\}=P\{X(t_1)\leq x_1\}P\{X(t_2)\leq x_2\} P{X(t1)x1,X(t2)x2}=P{X(t1)x1}P{X(t2)x2}

mean function mX(t)m_X(t)mX(t)

mX(t)=EX(t),t∈T m_X(t)=EX(t), t\in T mX(t)=EX(t),tT

covariance function BX(s,t)B_X(s,t)BX(s,t)

BX(s,t)=E[(X(s)−mX(s))(X(t)−mX(t))] B_X(s,t) = E[(X(s)-m_X(s))(X(t)-m_X(t))] BX(s,t)=E[(X(s)mX(s))(X(t)mX(t))]

variance function DX(t)=BX(t,t)D_X(t)=B_X(t,t)DX(t)=BX(t,t)

DX(t)=σX2(t)=E[(X(t)−mX(t))2]=EX2(t)−mX(t)2=EX2(t)−(EX(t))2 D_X(t)=\sigma^2_X(t) = E[(X(t)-m_X(t))^2] = EX^2(t)-m_X(t)^2 = EX^2(t)-(EX(t))^2 DX(t)=σX2(t)=E[(X(t)mX(t))2]=EX2(t)mX(t)2=EX2(t)(EX(t))2

Correlation coefficient RX(s,t)R_X(s, t)RX(s,t)

RX(s,t)=E[X(s)X(t)] R_X(s,t)=E[X(s)X(t)] RX(s,t)=E[X(s)X(t)]

while mX(t)m_X(t)mX(t) is the mean value of X(t)X(t)X(t), DX(t)D_X(t)DX(t) is the offset of X(t)X(t)X(t) to mean value at time ttt ,

BX(s,t)B_X(s,t )BX(s,t)&RX(s,t)R_X(s,t)RX(s,t) represents the relevance of SP {X(t),t∈T}\{X(t), t\in T\}{X(t),tT} from different time s,ts,ts,t .

variance D(x)D(x)D(x)

DX=EX2−(EX)2 DX=EX^2-(EX)^2 DX=EX2(EX)2

integral representation of E[f(X)],X∼U(0,T)E[f(X)], X\sim U(0, T)E[f(X)],XU(0,T)

if X∼U(0,T)X\sim U(0, T)XU(0,T):
E[f(X)]=1T∫0Tf(x)dx E[f(X)]=\frac{1}{T}\int_{0}^{T}f(x)dx E[f(X)]=T10Tf(x)dx
representing the mean value of every possible X in (0, T)

Process with Orthogonal Increments

stochastic process {X(t),t∈T}\{X(t), t\in T \}{X(t),tT} ,

if EX(t)=0EX(t) =0EX(t)=0, and t1&lt;t2≤t3&lt;t4∈T:E[(X(t2)−X(t1))(X(t4)−X(t3)‾)]=0t_1 \lt t_2 \leq t_3 \lt t_4 \in T : E[(X(t_2)-X(t_1))\overline{(X(t_4)-X(t_3)})]=0t1<t2t3<t4T:E[(X(t2)X(t1))(X(t4)X(t3))]=0,

X(t),t∈T{X(t), t\in T}X(t),tT is a process with orthogonal increments.

Specially, if T=[a,∞)T=[a, \infty)T=[a,) and X(a)=0X(a)=0X(a)=0,
BX(s,t)=RX(s,t)=σX2(min(s,t)) B_X(s,t)=R_X(s,t)=\sigma_X^2(min(s,t)) BX(s,t)=RX(s,t)=σX2(min(s,t))

Normal distribution

N(μ,σ2)EX=μ,DX=σ2 N(\mu,\sigma^2) \\EX=\mu, DX=\sigma^2 N(μ,σ2)EX=μ,DX=σ2

Specially, in standard Normal distribution,
μ=0,σ2=1 \mu=0, \sigma^2=1 μ=0,σ2=1

Poisson process

It can be defined as a counting process, which represents the random number of events up to some time.
P{X(t+s)−X(s)=n}=e−λt(λt)nn! P\{X(t+s)-X(s)=n\}=e^{-\lambda t} \frac{(\lambda t)^n}{n!} P{X(t+s)X(s)=n}=eλtn!(λt)n

  • has the natural numbers as its state space and the non-negative numbers as its index set.

let X(t),t≥0{X(t), t \geq 0}X(t),t0 be a Poisson process, for $t,s \in [0,\infty) $ and s≤ts \le tst ,
E[X(t)−X(s)]=D[X(t)−X(s)]=λ(t−s) E[X(t)-X(s)]=D[X(t)-X(s)]=\lambda(t-s) E[X(t)X(s)]=D[X(t)X(s)]=λ(ts)
since X(0)=0X(0)=0X(0)=0,
mX(t)=λtσx2(t)=λtBX(s,t)=λs m_X(t) = \lambda t \\ \sigma^2_x(t)=\lambda t \\ B_X(s,t)=\lambda s mX(t)=λtσx2(t)=λtBX(s,t)=λs
normally,
BX(s,t)=λmin⁡(s,t) B_X(s,t)=\lambda\min(s,t) BX(s,t)=λmin(s,t)

Poisson distribution

P(λ)P(X=k)=λkk!e−λEX=DX=λ P(\lambda) \\ P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda} \\ EX = DX = \lambda P(λ)P(X=k)=k!λkeλEX=DX=λ

Compound Poisson process

if {N(t),t≥0}\{N(t), t \geq 0 \}{N(t),t0} is a Poisson process of λ\lambdaλ,

{Yk,k=1,2,⋯&ThinSpace;}\{Y_k, k=1,2,\cdots\}{Yk,k=1,2,} is a set of independent and identically distributed random variables,

and is independent to {N(t),t≥0}\{N(t), t \geq 0\}{N(t),t0},
X(t)=∑k=1N(t)Yk,  t≥0, X(t)=\sum_{k=1}^{N(t)}Y_k,\ \ t\geq0, X(t)=k=1N(t)Yk,  t0,
{X(t),t≥0}\{X(t),t\geq0\}{X(t),t0} is a Compound Poisson process.
E[X(t)]=λtE(Y1)D[X(t)]=λtE(Y1)2 E[X(t)]=\lambda t E(Y_1) \\ D[X(t)]=\lambda t E(Y_1)^2 E[X(t)]=λtE(Y1)D[X(t)]=λtE(Y1)2

Markov Chain

probability transition matrix as
P=[pij] P = [p_{ij}] P=[pij]
Two-step transition probability matrix as
P(2)=PP P^{(2)}=PP P(2)=PP

State classification of Markov chain

assume state space I={1,2,⋯&ThinSpace;,9}I=\{1,2,\cdots ,9\}I={1,2,,9} ,

for state 1, the step TTT is the steps it takes to go back from state 1

for set {n:n≥1,pii(n)&gt;0}\{n:n\geq1,p_{ii}^{(n)}\gt0\}{n:n1,pii(n)>0},
d=d(i)=G.C.D{n:pii(n)&gt;0} d = d(i)=G.C.D\{n:p_{ii}^{(n)}&gt;0\} d=d(i)=G.C.D{n:pii(n)>0}
ddd is the cycle of state iii,

if d&gt;1d\gt1d>1, state iii is periodic,

if d=1d=1d=1, state iii is aperiodic.
fij=∑n=1∞fijn f_{ij}=\sum_{n=1}^{\infty}f_{ij}^{n} fij=n=1fijn
fijf_{ij}fij is the the probability that i can finally reach j,

when fii=1f_{ii}=1fii=1 , the state iii is recurrent. The necessary and sufficient condition is
∑n=0∞pii(n)=∞ \sum_{n=0}^{\infty}p_{ii}^{(n)}=\infty n=0pii(n)=
Specially, state iii is ergodic state if it is aperiodic & recurrent.

stationary distribution

{πj=∑i∈Iπipij,∑j∈Iπj=1,πj≥0, \begin{cases} \pi_j=\sum_{i \in I}\pi_i p_{ij} ,\\\\ \sum_{j \in I}\pi_j =1, \pi_j \geq 0, \end{cases} πj=iIπipij,jIπj=1,πj0,

the expected time
μi=1πi \mu_i=\frac{1}{\pi_i} μi=πi1

The Birth Death process

{X(t),t≥0}\{X(t),t\geq 0\}{X(t),t0} is a Birth Death process when
{pi,i+1(h)=λih+o(h),λi&gt;0,pi,i−1(h)=μih+o(h),μi&gt;0,μ0=0,pii(h)=1−λih−μih+o(h),pij(h)=o(h),∣i−j∣≥2, \begin{cases} p_{i,i+1}(h)=\lambda_ih+o(h),&amp;\lambda_i&gt;0,\\ p_{i,i-1}(h)=\mu_ih+o(h),&amp;\mu_i&gt;0,\mu_0=0,\\ p_{ii}(h)=1-\lambda_ih-\mu_ih+o(h),\\ p_{ij}(h)=o(h), &amp;|i-j|\geq2, \end{cases} pi,i+1(h)=λih+o(h),pi,i1(h)=μih+o(h),pii(h)=1λihμih+o(h),pij(h)=o(h),λi>0,μi>0,μ0=0,ij2,

Kolmogorov forward equation

pij′(t)=λj−1pi,j−1(t)−(λj+μj)pij(t)+μj+1pi,j+1(t),    i,j∈I p&#x27;_{ij}(t)=\lambda_{j-1}p_{i,j-1}(t)-(\lambda_j+\mu_j)p_{ij}(t)+\mu_{j+1}p_{i,j+1}(t),\ \ \ \ i,j \in I pij(t)=λj1pi,j1(t)(λj+μj)pij(t)+μj+1pi,j+1(t),    i,jI

希望不会挂科吧。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值