腐殖操作
读取照片并输出
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
from PIL import Image
import pylab
from dill.tests.test_mixins import fx
os.chdir('D:/AAA大学/3大二上/计算机视觉/第2-7章笔记课件')
img=cv2.imread('dige.png')
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
出现如下图片
对图片进行腐殖操作
kernel=np.ones((5,5),np.uint8)
erosion=cv2.erode(img,kernel,iterations=1)#迭代次数,
cv2.imshow('erosion',erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()
迭代一次结果
迭代两次结果
迭代三次结果
对圆进行赋值操作(更可视化
#对圆进行腐殖操作
pie=cv2.imread('pie.png')
cv2.imshow('pie',pie)
cv2.waitKey(0)
cv2.destroyAllWindows()
kernel=np.ones((30,30),np.uint8)
erosion_1=cv2.erode(pie,kernel,iterations=1)
erosion_2=cv2.erode(pie,kernel,iterations=2)
erosion_3=cv2.erode(pie,kernel,iterations=3)
res=np.hstack((erosion_1,erosion_2,erosion_3))
cv2.imshow('res',res)
cv2.waitKey(0)
原图
从左到右分别为腐殖操作一次,两次,三次
膨胀操作
由于膨胀操作与腐殖操作相似,故而附上整段代码,操作图片如下.
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
from PIL import Image
import pylab
from dill.tests.test_mixins import fx
os.chdir('D:/AAA大学/3大二上/计算机视觉/第2-7章笔记课件')
img=cv2.imread('dige.png')
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
kernel=np.ones((3,3),np.uint8)
erosion=cv2.erode(img,kernel,iterations=1)
cv2.imshow('erosion',erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()
kernel=np.ones((3,3),np.uint8)
dige_dilate=cv2.dilate(erosion,kernel,iterations=1)
cv2.imshow('dige_dilate',dige_dilate)
cv2.waitKey(0)
cv2.destroyAllWindows()
pie=cv2.imread('pie.png')
kernel=np.ones((30,30),np.uint8)
dilate1=cv2.dilate(pie,kernel,iterations=1)
dilate2=cv2.dilate(pie,kernel,iterations=2)
dilate3=cv2.dilate(pie,kernel,iterations=3)
res=np.hstack((dilate1,dilate2,dilate3))
cv2.imshow('res',res)
cv2.waitKey(0)
cv2.destroyAllWindows()