def _work(process_id, infer_dataset, args):
visualize_intermediate_cam = False
databin = infer_dataset[process_id]
infer_data_loader = DataLoader(databin, shuffle=False, num_workers=0, pin_memory=False)
for iter, pack in enumerate(infer_data_loader):
img_name = voc12.dataloader.decode_int_filename(pack['name'][0])
img = pack['img'][0].numpy()
cam_dict = np.load(os.path.join(args.cam_out_dir, img_name + '.npy'), allow_pickle=True).item()
cams = cam_dict['high_res']
keys = np.pad(cam_dict['keys'] + 1, (1, 0), mode='constant')
fg_conf_cam = np.pad(cams, ((1, 0), (0, 0), (0, 0)), mode='constant', constant_values=args.conf_fg_thres)
fg_conf_cam = np.argmax(fg_conf_cam, axis=0)
pred = imutils.crf_inference_label(img, fg_conf_cam, n_labels=keys.shape[0])
fg_conf = keys[pred]
bg_conf_cam = np.pad(cams, ((1, 0), (0, 0), (0, 0)), mode='constant', constant_values=args.conf_bg_thres)
bg_conf_cam = np.argmax(bg_conf_cam, axis=0)
pred = imutils.crf_inference_label(img, bg_conf_cam, n_labels=keys.shape[0])
bg_conf = keys[pred]
conf = fg_conf.copy()
conf[fg_conf == 0] = 255
conf[bg_conf + fg_conf == 0] = 0
imageio.imwrite(os.path.join(args.ir_label_out_dir, img_name + '.png'), conf.astype(np.uint8))
if process_id == args.num_workers - 1 and iter % (len(databin) // 20) == 0:
print("%d " % ((5 * iter + 1) // (len(databin) // 20)), end='')