Link:http://acm.hdu.edu.cn/showproblem.php?pid=2256
Problem of Precision
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1083 Accepted Submission(s): 645
Problem Description

Input
The first line of input gives the number of cases, T. T test cases follow, each on a separate line. Each test case contains one positive integer n. (1 <= n <= 10^9)
Output
For each input case, you should output the answer in one line.
Sample Input
3 1 2 5
Sample Output
9 97 841
Source
题意:求(sqrt(2) + sqrt(3)) ^ 2n MOD 1024。
编程思想:参考以下盗来的推公式的图
AC code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
#define LL long long
#define MAXN 1000010
using namespace std;
const int INF=0x3f3f3f3f;
//----以下为矩阵快速幂模板-----//
const int mod=1024;
const int NUM=11;//定义矩阵能表示的最大维数
int N;//N表示矩阵的维数,以下的矩阵加法、乘法、快速幂都是按N维矩阵运算的
struct Mat{//矩阵的类
int a[NUM][NUM];
void init()//将其初始化为单位矩阵
{
memset(a,0,sizeof(a));
for(int i=0;i<NUM;i++)
{
a[i][i]=1;
}
}
};
Mat add(Mat a,Mat b)//(a+b)%mod 矩阵加法
{
Mat ans;
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
ans.a[i][j]=a.a[i][j]+b.a[i][j];
ans.a[i][j]%=mod;
}
}
return ans;
}
Mat mul(Mat a,Mat b) //(a*b)%mod 矩阵乘法
{
Mat ans;
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
ans.a[i][j]=0;
for(int k=0;k<N;k++)
{
ans.a[i][j]+=a.a[i][k]*b.a[k][j];
}
ans.a[i][j]%=mod;
}
}
return ans;
}
Mat power(Mat a,int num)//(a^n)%mod 矩阵快速幂
{
Mat ans;
ans.init();
while(num)
{
if(num&1)
{
ans=mul(ans,a);
}
num>>=1;
a=mul(a,a);
}
return ans;
}
Mat pow_sum(Mat a,int num)//(a+a^2+a^3....+a^n)%mod 矩阵的幂和
{
int m;
Mat ans,pre;
if(num==1)
return a;
m=num/2;
pre=pow_sum(a,m);
ans=add(pre,mul(pre,power(a,m)));
if(num&1)
ans=add(ans,power(a,num));
return ans;
}
void output(Mat a)//输出矩阵
{
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
printf("%d%c",a.a[i][j],j==N-1?'\n':' ');
}
}
}
//----以上为矩阵快速幂模板-----//
int main()
{
int t,n,k,ans,i,j;
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
if(n==1)
{
printf("9\n");
continue;
}
Mat a,f;
N=2;
a.a[0][0]=5;
a.a[0][1]=12;
a.a[1][0]=2;
a.a[1][1]=5;
k=n%1024;//k为循环节
if(k==0)
k=1024;
f=power(a,k-1);
int an=f.a[0][0]*5+f.a[0][1]*2;
printf("%d\n",(2*an-1)%mod);
}
return 0;
}