Wolf and Rabbit(gcd)

本文探讨了一个经典的数学问题——狼追兔。通过分析狼按特定模式寻找藏在洞中的兔子的过程,找出兔子能够安全存活的条件。文章提供了两种解决方法,并附带C语言实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接:点击打开链接


Wolf and Rabbit

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5298    Accepted Submission(s): 2658


Problem Description
There is a hill with n holes around. The holes are signed from 0 to n-1.



A rabbit must hide in one of the holes. A wolf searches the rabbit in anticlockwise order. The first hole he get into is the one signed with 0. Then he will get into the hole every m holes. For example, m=2 and n=6, the wolf will get into the holes which are signed 0,2,4,0. If the rabbit hides in the hole which signed 1,3 or 5, she will survive. So we call these holes the safe holes.
 

Input
The input starts with a positive integer P which indicates the number of test cases. Then on the following P lines,each line consists 2 positive integer m and n(0<m,n<2147483648).
 

Output
For each input m n, if safe holes exist, you should output "YES", else output "NO" in a single line.
 

Sample Input
  
  
2 1 2 2 2
 

Sample Output
  
  
NO YES
 

Author
weigang Lee
 

Source
 

Recommend
Ignatius.L   |   We have carefully selected several similar problems for you:   1207  1299  1219  2175  1995 

HDU 1222 Wolf and Rabbit

该题是一题找规律题,当n与m都是偶数或是倍数是就存在这样的洞,

方法一:

#include<stdio.h>
#include<stdlib.h>
int  main()
{
     int  n,m,N;
     scanf ( "%d" ,&N );
     for ( int  i=1; i<=N; i++ )
     {
          scanf ( "%d%d" ,&n,&m );
          if ( n==1 || m==1)
            printf ( "NO\n"  );
          else
          {    
                  if ( (n%2==0) && (m%2==0) )
                          printf ( "YES\n"  );
                  else
                  {
                      if ( (n%m==0)||(m%n==0) )
                              printf ( "YES\n"  );  
                      else  printf ( "NO\n"  );
                  }   
          }  
     }
     return  0;   
}

  由第一种方法得到,我们可用Gcd()函数,当公约数大于1时就代表安全。

#include<stdio.h>
int  Gcd( int  a, int  b )
{
     return  b==0?a:Gcd( b,a%b );   
}
int  main()
{
    int  T,n,m;
    scanf ( "%d" ,&T );
    while ( T-- )
    {
       scanf ( "%d%d" ,&n,&m );
       if ( Gcd( n,m )>1 )
       printf ( "YES\n"  );
       else  printf ( "NO\n"  );      
    }
    return  0;   
}

  


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值